Abstract
The (bi)sulfite ion undergoes extensive autoxidation in neutral aqueous media with the formation of sulfur trioxide radical anion that is detected by ESR. The radical anion subsequently reacts with molecular oxygen to form a peroxyl radical. We find that when (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP-7,8-diol) is included in this autoxidation system, BP-7,8-diol is converted to diolepoxides, ultimate carcinogenic derivatives of benzo[a]pyrene. This epoxidation occurs with a stereoselectivity consistent with either a peroxyl radical or a peracid as the epoxidizing agent. The epoxidation is dependent on the concentration of both (bi)sulfite and oxygen. In the presence of 10 microM butylated hydroxyanisole, which abolishes (bi)sulfite autoxidation, no (bi)sulfite-dependent epoxidation occurs. These results are discussed in regard to the mechanism of (bi)sulfite autoxidation, and in relationship to the cocarcinogenicity of sulfur dioxide [anhydrous (bi)sulfite] for benzo[a]pyrene-induced pulmonary neoplasia.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berenblum I. Challenging problems in cocarcinogenesis. Cancer Res. 1985 May;45(5):1917–1921. [PubMed] [Google Scholar]
- Cohen H. J., Fridovich I. Hepatic sulfite oxidase. Purification and properties. J Biol Chem. 1971 Jan 25;246(2):359–366. [PubMed] [Google Scholar]
- Dix T. A., Fontana R., Panthani A., Marnett L. J. Hematin-catalyzed epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by polyunsaturated fatty acid hydroperoxides. J Biol Chem. 1985 May 10;260(9):5358–5365. [PubMed] [Google Scholar]
- Dix T. A., Marnett L. J. Metabolism of polycyclic aromatic hydrocarbon derivatives to ultimate carcinogens during lipid peroxidation. Science. 1983 Jul 1;221(4605):77–79. doi: 10.1126/science.6304879. [DOI] [PubMed] [Google Scholar]
- Huie R. E., Neta P. Oxidation of ascorbate and a tocopherol analogue by the sulfite-derived radicals SO3- and SO5-. Chem Biol Interact. 1985 Feb-Apr;53(1-2):233–238. doi: 10.1016/s0009-2797(85)80099-5. [DOI] [PubMed] [Google Scholar]
- Johnson J. L., Waud W. R., Rajagopalan K. V., Duran M., Beemer F. A., Wadman S. K. Inborn errors of molybdenum metabolism: combined deficiencies of sulfite oxidase and xanthine dehydrogenase in a patient lacking the molybdenum cofactor. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3715–3719. doi: 10.1073/pnas.77.6.3715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leung K. H., Post G. B., Menzel D. B. Glutathione S-sulfonate, a sulfur dioxide metabolite, as a competitive inhibitor of glutathione S-transferase, and its reduction by glutathione reductase. Toxicol Appl Pharmacol. 1985 Mar 15;77(3):388–394. doi: 10.1016/0041-008x(85)90178-4. [DOI] [PubMed] [Google Scholar]
- Marnett L. J., Bienkowski M. J. Hydroperoxide-dependent oxygenation of trans-7,8-dihydroxy-7,8-dihydro benzo[a]pyrene by ram seminal vesicle microsomes. Source of the oxygen. Biochem Biophys Res Commun. 1980 Sep 30;96(2):639–647. doi: 10.1016/0006-291x(80)91403-5. [DOI] [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem. 1968 Nov 10;243(21):5753–5760. [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem. 1969 Nov 25;244(22):6056–6063. [PubMed] [Google Scholar]
- Mottley C., Mason R. P., Chignell C. F., Sivarajah K., Eling T. E. The formation of sulfur trioxide radical anion during the prostaglandin hydroperoxidase-catalyzed oxidation of bisulfite (hydrated sulfur dioxide). J Biol Chem. 1982 May 10;257(9):5050–5055. [PubMed] [Google Scholar]
- Mottley C., Trice T. B., Mason R. P. Direct detection of the sulfur trioxide radical anion during the horseradish peroxidase-hydrogen peroxide oxidation of sulfite (aqueous sulfur dioxide). Mol Pharmacol. 1982 Nov;22(3):732–737. [PubMed] [Google Scholar]
- Neta P., Huie R. E. Free-radical chemistry of sulfite. Environ Health Perspect. 1985 Dec;64:209–217. doi: 10.1289/ehp.8564209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pauluhn J., Thyssen J., Althoff J., Kimmerle G., Mohr U. Long-term inhalation study with benzo(a)pyrene and SO2 in Syrian golden hamsters. Exp Pathol. 1985;28(1):31–31. doi: 10.1016/s0232-1513(85)80029-3. [DOI] [PubMed] [Google Scholar]
- Reed G. A., Brooks E. A., Eling T. E. Phenylbutazone-dependent epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene. A new mechanism for prostaglandin H synthase-catalyzed oxidations. J Biol Chem. 1984 May 10;259(9):5591–5595. [PubMed] [Google Scholar]
- Shapiro R. Genetic effects of bisulfite (sulfur dioxide). Mutat Res. 1977;39(2):149–175. doi: 10.1016/0165-1110(77)90020-3. [DOI] [PubMed] [Google Scholar]
- Shapiro R. Genetic effects of bisulfite: implications for environmental protection. Basic Life Sci. 1983;23:35–60. doi: 10.1007/978-1-4684-4382-0_2. [DOI] [PubMed] [Google Scholar]
- Yagi H., Hernandez O., Jerina D. M. Letter: Synthesis of (+/-)-7 beta,8alpha-dihydroxy-9 beta,10beta-epoxy-7,8,-9,10-tetrahydrobenzo(a)pyrene, a potential metabolite of the carcinogen benzo(a)pyrene with stereochemistry related to the antileukemic triptolides. J Am Chem Soc. 1975 Nov 12;97(23):6881–6883. doi: 10.1021/ja00856a057. [DOI] [PubMed] [Google Scholar]
- Yagi H., Thakker D. R., Hernandez O., Koreeda M., Jerina D. M. Synthesis and reactions of the highly mutagenic 7,8-diol 9,10-epoxides of the carcinogen benzo[a]pyrene. J Am Chem Soc. 1977 Mar 2;99(5):1604–1611. doi: 10.1021/ja00447a053. [DOI] [PubMed] [Google Scholar]
