Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Oct;83(19):7518–7521. doi: 10.1073/pnas.83.19.7518

Somatostatin selectively enhances acetylcholine-induced excitations in rat hippocampus and cortex.

J R Mancillas, G R Siggins, F E Bloom
PMCID: PMC386750  PMID: 2876428

Abstract

The neuronal effects of somatostatin-14 (SS-14) and its influence on responses to acetylcholine (AcCho) were studied in vivo in the rat parietal cortex and dorsal hippocampus, using single-unit recording and microiontophoresis. SS-14 inhibited spontaneous firing of nearly all cells tested, while AcCho facilitated their firing. In contrast to its direct slowing effect, sustained iontophoretic application of SS-14 enhanced AcCho-induced excitations in 78% of all cells tested. This AcCho-enhancing effect of SS-14 was dose dependent. SS-14 did not enhance the responsiveness to pulses of the excitatory amino acid glutamate. Neurons tonically driven by iontophoretic currents of AcCho responded to concurrent pulses of SS-14 with an increase in firing. Thus, iontophoretic application of SS-14 can produce qualitatively different effects on the spontaneous activity of its target cells depending on the simultaneous effects of other chemical messengers. These condition-dependent interactions may explain the diverse neuronal effects of SS-14 reported in the literature.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso G., Tapia-Arancibia L., Assenmacher I. Electron microscopic immunocytochemical study of somatostatin neurons in the periventricular nucleus of the rat hypothalamus with special reference to their relationships with homologous neuronal processes. Neuroscience. 1985 Oct;16(2):297–306. doi: 10.1016/0306-4522(85)90003-x. [DOI] [PubMed] [Google Scholar]
  2. Bakhit C., Benoit R., Bloom F. E. Release of somatostatin-28(1-12) from rat hypothalamus in vitro. Nature. 1983 Feb 10;301(5900):524–526. doi: 10.1038/301524a0. [DOI] [PubMed] [Google Scholar]
  3. Benoit R., Böhlen P., Ling N., Briskin A., Esch F., Brazeau P., Ying S. Y., Guillemin R. Presence of somatostatin-28-(1-12) in hypothalamus and pancreas. Proc Natl Acad Sci U S A. 1982 Feb;79(3):917–921. doi: 10.1073/pnas.79.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benoit R., Ling N., Alford B., Guillemin R. Seven peptides derived from pro-somatostatin in rat brain. Biochem Biophys Res Commun. 1982 Aug;107(3):944–950. doi: 10.1016/0006-291x(82)90614-3. [DOI] [PubMed] [Google Scholar]
  5. Bird S. J., Aghajanian G. K. The cholinergic pharmacology of hippocampal pyramidal cells: a microiontophoretic study. Neuropharmacology. 1976 May;15(5):273–282. doi: 10.1016/0028-3908(76)90128-3. [DOI] [PubMed] [Google Scholar]
  6. Bloom F. E. Neurotransmitter diversity and its functional significance. J R Soc Med. 1985 Mar;78(3):189–192. doi: 10.1177/014107688507800303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bloom F. E. The functional significance of neurotransmitter diversity. Am J Physiol. 1984 Mar;246(3 Pt 1):C184–C194. doi: 10.1152/ajpcell.1984.246.3.C184. [DOI] [PubMed] [Google Scholar]
  8. Bloom F. E. To spritz or not to spritz: the doubtful value of aimless iontophoresis. Life Sci. 1974 May 16;14(10):1819–1834. doi: 10.1016/0024-3205(74)90400-7. [DOI] [PubMed] [Google Scholar]
  9. Brazeau P., Vale W., Burgus R., Ling N., Butcher M., Rivier J., Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973 Jan 5;179(4068):77–79. doi: 10.1126/science.179.4068.77. [DOI] [PubMed] [Google Scholar]
  10. Brownstein M., Arimura A., Sato H., Schally A. V., Kizer J. S. The regional distribution of somatostatin in the rat brain. Endocrinology. 1975 Jun;96(6):1456–1461. doi: 10.1210/endo-96-6-1456. [DOI] [PubMed] [Google Scholar]
  11. Delfs J. R., Dichter M. A. Effects of somatostatin on mammalian cortical neurons in culture: physiological actions and unusual dose response characteristics. J Neurosci. 1983 Jun;3(6):1176–1188. doi: 10.1523/JNEUROSCI.03-06-01176.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dodd J., Kelly S. Is somatostatin an excitatory transmitter in the hippocampus? Nature. 1978 Jun 22;273(5664):674–675. doi: 10.1038/273674a0. [DOI] [PubMed] [Google Scholar]
  13. Epelbaum J., Brazeau P., Tsang D., Brawer J., Martin J. B. Subcellular distribution of radioimmunoassayable somatostatin in rat brain. Brain Res. 1977 May 6;126(2):309–323. doi: 10.1016/0006-8993(77)90728-4. [DOI] [PubMed] [Google Scholar]
  14. Ferron A., Siggins G. R., Bloom F. E. Vasoactive intestinal polypeptide acts synergistically with norepinephrine to depress spontaneous discharge rate in cerebral cortical neurons. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8810–8812. doi: 10.1073/pnas.82.24.8810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gamse R., Vaccaro D. E., Gamse G., DiPace M., Fox T. O., Leeman S. E. Release of immunoreactive somatostatin from hypothalamic cells in culture: inhibition by gamma-aminobutyric acid. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5552–5556. doi: 10.1073/pnas.77.9.5552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hendry S. H., Jones E. G., DeFelipe J., Schmechel D., Brandon C., Emson P. C. Neuropeptide-containing neurons of the cerebral cortex are also GABAergic. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6526–6530. doi: 10.1073/pnas.81.20.6526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Houser C. R., Crawford G. D., Salvaterra P. M., Vaughn J. E. Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses. J Comp Neurol. 1985 Apr 1;234(1):17–34. doi: 10.1002/cne.902340103. [DOI] [PubMed] [Google Scholar]
  18. Ioffe S., Havlicek V., Friesen H., Chernick V. Effect of somatostatin (SRIF) and L-glutamate on neurons of the sensorimotor cortex in awake habituated rabbits. Brain Res. 1978 Sep 22;153(2):414–418. doi: 10.1016/0006-8993(78)90425-0. [DOI] [PubMed] [Google Scholar]
  19. Iversen L. L., Iversen S. D., Bloom F., Douglas C., Brown M., Vale W. Calcium-dependent release of somatostatin and neurotensin from rat brain in vitro. Nature. 1978 May 11;273(5658):161–163. doi: 10.1038/273161a0. [DOI] [PubMed] [Google Scholar]
  20. Kobayashi R. M., Brown M., Vale W. Regional distribution of neurotensin and somatostatin in rat brain. Brain Res. 1977 May 13;126(3):584–588. doi: 10.1016/0006-8993(77)90613-8. [DOI] [PubMed] [Google Scholar]
  21. Mancillas J. R., Siggins G. R., Bloom F. E. Systemic ethanol: selective enhancement of responses to acetylcholine and somatostatin in hippocampus. Science. 1986 Jan 10;231(4734):161–163. doi: 10.1126/science.2867600. [DOI] [PubMed] [Google Scholar]
  22. Morrison J. H., Benoit R., Magistretti P. J., Bloom F. E. Immunohistochemical distribution of pro-somatostatin-related peptides in cerebral cortex. Brain Res. 1983 Mar 7;262(2):344–351. doi: 10.1016/0006-8993(83)91031-4. [DOI] [PubMed] [Google Scholar]
  23. Morrison J. H., Benoit R., Magistretti P. J., Ling N., Bloom F. E. Immunohistochemical distribution of pro-somatostatin-related peptides in hippocampus. Neurosci Lett. 1982 Dec 30;34(2):137–142. doi: 10.1016/0304-3940(82)90165-3. [DOI] [PubMed] [Google Scholar]
  24. Olpe H. R., Balcar V. J., Bittiger H., Rink H., Sieber P. Central actions of somatostatin. Eur J Pharmacol. 1980 May 2;63(2-3):127–133. doi: 10.1016/0014-2999(80)90436-7. [DOI] [PubMed] [Google Scholar]
  25. Petrusz P., Sar M., Grossman G. H., Kizer J. S. Synaptic terminals with somatostatin-like immunoreactivity in the rat brain. Brain Res. 1977 Nov 25;137(1):181–187. doi: 10.1016/0006-8993(77)91024-1. [DOI] [PubMed] [Google Scholar]
  26. Pittman Q. J., Siggins G. R. Somatostatin hyperpolarizes hippocampal pyramidal cells in vitro. Brain Res. 1981 Sep 28;221(2):402–408. doi: 10.1016/0006-8993(81)90791-5. [DOI] [PubMed] [Google Scholar]
  27. Randić M., Miletić V. Depressant actions of methionine-enkephalin and somatostatin in cat dorsal horn neurones activated by noxious stimuli. Brain Res. 1978 Aug 18;152(1):196–202. doi: 10.1016/0006-8993(78)90148-8. [DOI] [PubMed] [Google Scholar]
  28. Somogyi P., Hodgson A. J., Smith A. D., Nunzi M. G., Gorio A., Wu J. Y. Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin-immunoreactive material. J Neurosci. 1984 Oct;4(10):2590–2603. doi: 10.1523/JNEUROSCI.04-10-02590.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES