Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Oct;83(19):7552–7556. doi: 10.1073/pnas.83.19.7552

Analysis by immunocytochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat.

C F Deschepper, S H Mellon, F Cumin, J D Baxter, W F Ganong
PMCID: PMC386757  PMID: 3532116

Abstract

Renin gene expression in cells and tissues of the rat was examined by in situ hybridization histochemistry and immunocytochemistry. By using a mouse cDNA probe, hybridization histochemistry revealed renin mRNA in the renal juxtaglomerular cells, testicular Leydig cells, adrenal zona glomerulosa cells, the intermediate lobe of the pituitary, and scattered cells of the anterior lobe of the pituitary. With four separate antisera to mouse submaxillary renin, there was immunoreactivity in the renal juxtaglomerular cells. However, only one of the antisera stained the Leydig cells, a second stained the adrenal zona glomerulosa, a third stained the intermediate lobe of the pituitary, and a fourth stained scattered cells of the anterior lobe of the pituitary that were identified as gonadotrophs. The variations with the different antisera in detecting extrarenal renin are unexplained but could imply that posttranslational proteolysis or glycosylation of preprorenin varies in different tissues with consequent variations in immunoreactivity. The finding of renin mRNA and renin-like immunoreactivity in these tissues supports the notion that these tissues are sites for production of renin.

Full text

PDF
7552

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen S., Taylor J. M., Murakami K., Michelakis A. M., Inagami T. Isolation and characterization of renin-like enzymes from mouse submaxillary glands. Biochemistry. 1972 Nov 7;11(23):4286–4293. doi: 10.1021/bi00773a015. [DOI] [PubMed] [Google Scholar]
  2. Deschepper C. F., Seidler C. D., Steele M. K., Ganong W. F. Further studies on the localization of angiotensin-II-like immunoreactivity in the anterior pituitary gland of the male rat, comparing various antisera to pituitary hormones and their specificity. Neuroendocrinology. 1985 Jun;40(6):471–475. doi: 10.1159/000124117. [DOI] [PubMed] [Google Scholar]
  3. Doi Y., Franco-Saenz R., Mulrow P. J. Evidence for an extrarenal source of inactive renin in rats. Hypertension. 1984 Sep-Oct;6(5):627–632. doi: 10.1161/01.hyp.6.5.627. [DOI] [PubMed] [Google Scholar]
  4. Evin G., Devin J., Castro B., Menard J., Corvol P. Synthesis of peptides related to the prosegment of mouse submaxillary gland renin precursor: an approach to renin inhibitors. Proc Natl Acad Sci U S A. 1984 Jan;81(1):48–52. doi: 10.1073/pnas.81.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Field L. J., McGowan R. A., Dickinson D. P., Gross K. W. Tissue and gene specificity of mouse renin expression. Hypertension. 1984 Jul-Aug;6(4):597–603. doi: 10.1161/01.hyp.6.4.597. [DOI] [PubMed] [Google Scholar]
  6. GROSS F., SCHAECHTELIN G., ZIEGLER M., BERGER M. A RENIN-LIKE SUBSTANCE IN THE PLACENTA AND UTERUS OF THE RABBIT. Lancet. 1964 Apr 25;1(7339):914–916. doi: 10.1016/s0140-6736(64)91637-x. [DOI] [PubMed] [Google Scholar]
  7. Ganten D., Minnich J. L., Granger P., Hayduk K., Brecht H. M., Barbeau A., Boucher R., Genest J. Angiotensin-forming enzyme in brain tissue. Science. 1971 Jul 2;173(3991):64–65. doi: 10.1126/science.173.3991.64. [DOI] [PubMed] [Google Scholar]
  8. Gee C. E., Roberts J. L. In situ hybridization histochemistry: a technique for the study of gene expression in single cells. DNA. 1983;2(2):157–163. doi: 10.1089/dna.1983.2.157. [DOI] [PubMed] [Google Scholar]
  9. Healy D. P., Maciejewski A. R., Printz M. P. Autoradiographic localization of [125I]-angiotensin II binding sites in the rat adrenal gland. Endocrinology. 1985 Mar;116(3):1221–1223. doi: 10.1210/endo-116-3-1221. [DOI] [PubMed] [Google Scholar]
  10. Hirose S., Ohsawa T., Inagami T., Murakami K. Brain renin from bovine anterior pituitary. Isolation and properties. J Biol Chem. 1982 Jun 10;257(11):6316–6321. [PubMed] [Google Scholar]
  11. Hirose S., Yokosawa H., Inagami T. Immunochemical identification of renin in rat brain and distinction from acid proteases. Nature. 1978 Jul 27;274(5669):392–393. doi: 10.1038/274392a0. [DOI] [PubMed] [Google Scholar]
  12. Matoba T., Murakami K., Inagami T. Rat renin: purification and characterization. Biochim Biophys Acta. 1978 Oct 12;526(2):560–571. doi: 10.1016/0005-2744(78)90146-8. [DOI] [PubMed] [Google Scholar]
  13. Menard J., Catt K. J. Measurement of renin activity, concentration and substrate in rat plasma by radioimmunoassay of angiotensin I. Endocrinology. 1972 Feb;90(2):422–430. doi: 10.1210/endo-90-2-422. [DOI] [PubMed] [Google Scholar]
  14. Mullins J. J., Burt D. W., Windass J. D., McTurk P., George H., Brammar W. J. Molecular cloning of two distinct renin genes from the DBA/2 mouse. EMBO J. 1982;1(11):1461–1466. doi: 10.1002/j.1460-2075.1982.tb01338.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nakamaru M., Misono K. S., Naruse M., Workman R. J., Inagami T. A role for the adrenal renin-angiotensin system in the regulation of potassium-stimulated aldosterone production. Endocrinology. 1985 Nov;117(5):1772–1778. doi: 10.1210/endo-117-5-1772. [DOI] [PubMed] [Google Scholar]
  16. Naruse K., Takii Y., Inagami T. Immunohistochemical localization of renin in luteinizing hormone-producing cells of rat pituitary. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7579–7583. doi: 10.1073/pnas.78.12.7579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Naruse M., Inagami T. Markedly elevated specific renin levels in the adrenal in genetically hypertensive rats. Proc Natl Acad Sci U S A. 1982 May;79(10):3295–3299. doi: 10.1073/pnas.79.10.3295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Naruse M., Naruse K., Inagaki T., Inagami T. Immunoreactive renin in mouse adrenal gland. Localization in the inner cortical region. Hypertension. 1984 Mar-Apr;6(2 Pt 1):275–280. [PubMed] [Google Scholar]
  19. Naruse M., Naruse K., Shizume K., Inagami T. Gonadotropin-dependent renin in the rat testes. Proc Soc Exp Biol Med. 1984 Nov;177(2):337–342. doi: 10.3181/00379727-177-41953. [DOI] [PubMed] [Google Scholar]
  20. Naruse M., Sussman C. R., Naruse K., Jackson R. V., Inagami T. Renin exists in human adrenal tissue. J Clin Endocrinol Metab. 1983 Sep;57(3):482–487. doi: 10.1210/jcem-57-3-482. [DOI] [PubMed] [Google Scholar]
  21. Pandey K. N., Melner M. H., Parmentier M., Inagami T. Demonstration of renin activity in purified rat Leydig cells: evidence for the existence of an endogenous inactive (latent) form of enzyme. Endocrinology. 1984 Nov;115(5):1753–1759. doi: 10.1210/endo-115-5-1753. [DOI] [PubMed] [Google Scholar]
  22. Pandey K. N., Misono K. S., Inagami T. Evidence for intracellular formation of angiotensins: coexistence of renin and angiotensin-converting enzyme in Leydig cells of rat testis. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1337–1343. doi: 10.1016/0006-291x(84)91238-5. [DOI] [PubMed] [Google Scholar]
  23. Panthier J. J., Foote S., Chambraud B., Strosberg A. D., Corvol P., Rougeon F. Complete amino acid sequence and maturation of the mouse submaxillary gland renin precursor. Nature. 1982 Jul 1;298(5869):90–92. doi: 10.1038/298090a0. [DOI] [PubMed] [Google Scholar]
  24. Parmentier M., Inagami T., Pochet R., Desclin J. C. Pituitary-dependent renin-like immunoreactivity in the rat testis. Endocrinology. 1983 Apr;112(4):1318–1323. doi: 10.1210/endo-112-4-1318. [DOI] [PubMed] [Google Scholar]
  25. Powers C. A., Nasjletti A. A kininogenase resembling glandular kallikrein in the rat pituitary pars intermedia. Endocrinology. 1983 Apr;112(4):1194–1200. doi: 10.1210/endo-112-4-1194. [DOI] [PubMed] [Google Scholar]
  26. Pratt R. E., Ouellette A. J., Dzau V. J. Biosynthesis of renin: multiplicity of active and intermediate forms. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6809–6813. doi: 10.1073/pnas.80.22.6809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  28. Sealey J. E., Atlas S. A., Laragh J. H. Linking the kallikrein and renin systems via activation of inactive renin: new data and a hypothesis. Am J Med. 1978 Dec;65(6):994–1000. doi: 10.1016/0002-9343(78)90752-0. [DOI] [PubMed] [Google Scholar]
  29. Shivers B. D., Schachter B. S., Pfaff D. W. In situ hybridization for the study of gene expression in the brain. Methods Enzymol. 1986;124:497–510. doi: 10.1016/0076-6879(86)24036-7. [DOI] [PubMed] [Google Scholar]
  30. Taugner R., Hackenthal E., Rix E., Nobiling R., Poulsen K. Immunocytochemistry of the renin-angiotensin system: renin, angiotensinogen, angiotensin I, angiotensin II, and converting enzyme in the kidneys of mice, rats, and tree shrews. Kidney Int Suppl. 1982 Aug;12:S33–S43. [PubMed] [Google Scholar]
  31. Warren A. Y., Craven D. J., Symonds E. M. Production of active and inactive renin by cultured explants from the human female genital tract. Br J Obstet Gynaecol. 1982 Aug;89(8):628–632. doi: 10.1111/j.1471-0528.1982.tb04717.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES