Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Oct;83(20):7588–7592. doi: 10.1073/pnas.83.20.7588

Endogenous inhibitor of nonlysosomal high molecular weight protease and calcium-dependent protease.

K Murakami, J D Etlinger
PMCID: PMC386766  PMID: 3020549

Abstract

An endogenous inhibitor of high molecular weight protease was purified from human erythrocytes and partially characterized. The inhibitor was isolated by DEAE-Sephacel ion-exchange chromatography followed by separation on a Bio-Gel A-0.5m column. The inhibitor displayed a native Mr of 240,000 and contained a single subunit of Mr 40,000 after NaDodSO4/polyacrylamide gel electrophoresis. The Mr 240,000 hexamer inhibited high molecular weight protease noncompetitively (Ki = 8.3 X 10(-8) M) and showed marked susceptibility to proteolytic digestion and heat treatment. The purified factor was also a potent inhibitor of calcium-dependent protease (Ki = 2.8 X 10(-8) M), whereas it had no effect on trypsin, chymotrypsin, or papain. Heat treatment (50-70 degrees C X 10 min) caused loss of inhibition against high molecular weight protease; however, inhibition of calcium-dependent protease was stable under the same conditions. This result is consistent with different domains on the inhibitor that interact with high molecular weight protease and calcium-dependent protease. Together with earlier studies in which repression of inhibitor by an ATP-ubiquitin-dependent process was proposed, the present results suggest a general mechanism for regulation of multiple nonlysosomal proteases that are complexed with endogenous inhibitors.

Full text

PDF
7588

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
  2. Charette M. F., Henderson G. W., Markovitz A. ATP hydrolysis-dependent protease activity of the lon (capR) protein of Escherichia coli K-12. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4728–4732. doi: 10.1073/pnas.78.8.4728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chung C. H., Goldberg A. L. The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4931–4935. doi: 10.1073/pnas.78.8.4931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ciehanover A., Hod Y., Hershko A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1100–1105. doi: 10.1016/0006-291x(78)91249-4. [DOI] [PubMed] [Google Scholar]
  5. Cottin P., Vidalenc P. L., Ducastaing A. Ca2+-dependent association between a Ca2+-activated neutral proteinase (CaANP) and its specific inhibitor. FEBS Lett. 1981 Dec 28;136(2):221–224. doi: 10.1016/0014-5793(81)80622-9. [DOI] [PubMed] [Google Scholar]
  6. Cottin P., Vidalenc P. L., Merdaci N., Ducastaing A. Evidence for non-competitive inhibition between two calcium-dependent activated neutral proteinases and their specific inhibitor. Biochim Biophys Acta. 1983 Mar 16;743(2):299–302. doi: 10.1016/0167-4838(83)90227-3. [DOI] [PubMed] [Google Scholar]
  7. Dahlmann B., Kuehn L., Reinauer H. Identification of three high molecular mass cysteine proteinases from rat skeletal muscle. FEBS Lett. 1983 Aug 22;160(1-2):243–247. doi: 10.1016/0014-5793(83)80975-2. [DOI] [PubMed] [Google Scholar]
  8. Dayton W. R., Reville W. J., Goll D. E., Stromer M. H. A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme. Biochemistry. 1976 May 18;15(10):2159–2167. doi: 10.1021/bi00655a020. [DOI] [PubMed] [Google Scholar]
  9. DeMartino G. N., Goldberg A. L. Identification and partial purification of an ATP-stimulated alkaline protease in rat liver. J Biol Chem. 1979 May 25;254(10):3712–3715. [PubMed] [Google Scholar]
  10. Desautels M., Goldberg A. L. Demonstration of an ATP-dependent, vanadate-sensitive endoprotease in the matrix of rat liver mitochondria. J Biol Chem. 1982 Oct 10;257(19):11673–11679. [PubMed] [Google Scholar]
  11. Etlinger J. D., Goldberg A. L. A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc Natl Acad Sci U S A. 1977 Jan;74(1):54–58. doi: 10.1073/pnas.74.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Etlinger J. D., Speiser S., Wajnberg E., Glucksman M. J. ATP-dependent proteolysis in erythroid and muscle cells. Acta Biol Med Ger. 1981;40(10-11):1285–1291. [PubMed] [Google Scholar]
  13. Eytan E., Hershko A. Relevance of protease "inhibitor" to the ATP-ubiquitin proteolytic system. Biochem Biophys Res Commun. 1984 Jul 18;122(1):116–123. doi: 10.1016/0006-291x(84)90447-9. [DOI] [PubMed] [Google Scholar]
  14. Goldberg A. L., St John A. C. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 1976;45:747–803. doi: 10.1146/annurev.bi.45.070176.003531. [DOI] [PubMed] [Google Scholar]
  15. Goll D. E., Edmunds T., Kleese W. C., Sathe S. K., Shannon J. D. Some properties of the Ca2+-dependent proteinase. Prog Clin Biol Res. 1985;180:151–164. [PubMed] [Google Scholar]
  16. Haas A. L., Murphy K. E., Bright P. M. The inactivation of ubiquitin accounts for the inability to demonstrate ATP, ubiquitin-dependent proteolysis in liver extracts. J Biol Chem. 1985 Apr 25;260(8):4694–4703. [PubMed] [Google Scholar]
  17. Haas A. L., Warms J. V., Hershko A., Rose I. A. Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J Biol Chem. 1982 Mar 10;257(5):2543–2548. [PubMed] [Google Scholar]
  18. Hershko A., Ciechanover A., Heller H., Haas A. L., Rose I. A. Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1783–1786. doi: 10.1073/pnas.77.4.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hershko A., Ciechanover A. Mechanisms of intracellular protein breakdown. Annu Rev Biochem. 1982;51:335–364. doi: 10.1146/annurev.bi.51.070182.002003. [DOI] [PubMed] [Google Scholar]
  20. Hershko A., Heller H., Eytan E., Kaklij G., Rose I. A. Role of the alpha-amino group of protein in ubiquitin-mediated protein breakdown. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7021–7025. doi: 10.1073/pnas.81.22.7021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hirado M., Iwata D., Niinobe M., Fujii S. Purification and properties of thiol protease inhibitor from rat liver cytosol. Biochim Biophys Acta. 1981 Jun 29;669(1):21–27. doi: 10.1016/0005-2795(81)90218-x. [DOI] [PubMed] [Google Scholar]
  22. Hough R., Pratt G., Rechsteiner M. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J Biol Chem. 1986 Feb 15;261(5):2400–2408. [PubMed] [Google Scholar]
  23. Imajoh S., Suzuki K. Reversible interaction between Ca2+-activated neutral protease (CANP) and its endogenous inhibitor. FEBS Lett. 1985 Jul 22;187(1):47–50. doi: 10.1016/0014-5793(85)81211-4. [DOI] [PubMed] [Google Scholar]
  24. Ismail F., Gevers W. A high-molecular-weight cysteine endopeptidase from rat skeletal muscle. Biochim Biophys Acta. 1983 Jan 26;742(2):399–408. doi: 10.1016/0167-4838(83)90327-8. [DOI] [PubMed] [Google Scholar]
  25. Jentoft N., Dearborn D. G. Labeling of proteins by reductive methylation using sodium cyanoborohydride. J Biol Chem. 1979 Jun 10;254(11):4359–4365. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Lenney J. F., Tolan J. R., Sugai W. J., Lee A. G. Thermostable endogenous inhibitors of cathepsins B and H. Eur J Biochem. 1979 Nov 1;101(1):153–161. doi: 10.1111/j.1432-1033.1979.tb04227.x. [DOI] [PubMed] [Google Scholar]
  28. Lepley R. A., Pampusch M., Dayton W. R. Purification of a high-molecular-weight inhibitor of the calcium-activated proteinase. Biochim Biophys Acta. 1985 Mar 22;828(1):95–103. doi: 10.1016/0167-4838(85)90014-7. [DOI] [PubMed] [Google Scholar]
  29. Mellgren R. L. Canine cardiac calcium-dependent proteases: Resolution of two forms with different requirements for calcium. FEBS Lett. 1980 Jan 1;109(1):129–133. doi: 10.1016/0014-5793(80)81326-3. [DOI] [PubMed] [Google Scholar]
  30. Murakami K., Voellmy R., Goldberg A. L. Protein degradation is stimulated by ATP in extracts of Escherichia coli. J Biol Chem. 1979 Sep 10;254(17):8194–8200. [PubMed] [Google Scholar]
  31. Murakami T., Hatanaka M., Murachi T. The cytosol of human erythrocytes contains a highly Ca2+-sensitive thiol protease (calpain I) and its specific inhibitor protein (calpastatin). J Biochem. 1981 Dec;90(6):1809–1816. doi: 10.1093/oxfordjournals.jbchem.a133659. [DOI] [PubMed] [Google Scholar]
  32. Nakamura M., Inomata M., Hayashi M., Imahori K., Kawashima S. Purification and characterization of 210,000-dalton inhibitor of calcium-activated neutral protease from rabbit skeletal muscle and its relation to 50,000-dalton inhibitor. J Biochem. 1985 Sep;98(3):757–765. doi: 10.1093/oxfordjournals.jbchem.a135333. [DOI] [PubMed] [Google Scholar]
  33. Pontremoli S., Melloni E., Salamino F., Sparatore B., Michetti M., Horecker B. L. Endogenous inhibitors of lysosomal proteinases. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1261–1264. doi: 10.1073/pnas.80.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Reddy M. K., Etlinger J. D., Rabinowitz M., Fischman D. A., Zak R. Removal of Z-lines and alpha-actinin from isolated myofibrils by a calcium-activated neutral protease. J Biol Chem. 1975 Jun 10;250(11):4278–4284. [PubMed] [Google Scholar]
  35. Rieder R. F., Ibrahim A., Etlinger J. D. A particle-associated ATP-dependent proteolytic activity in erythroleukemia cells. J Biol Chem. 1985 Feb 25;260(4):2015–2018. [PubMed] [Google Scholar]
  36. Rose I. A., Warms J. V., Hershko A. A high molecular weight protease in liver cytosol. J Biol Chem. 1979 Sep 10;254(17):8135–8138. [PubMed] [Google Scholar]
  37. Roth M., Hoechst M., Afting E. G. Controlled intracellular proteolysis during postpartal involution of the uterus: characterization and regulation of an alkaline proteinase. Acta Biol Med Ger. 1981;40(10-11):1357–1363. [PubMed] [Google Scholar]
  38. Spanier A. M., Bird J. W. Endogenous cathepsin B inhibitor activity in normal and myopathic red and white skeletal muscle. Muscle Nerve. 1982 Apr;5(4):313–320. doi: 10.1002/mus.880050407. [DOI] [PubMed] [Google Scholar]
  39. Speiser S., Etlinger J. D. ATP stimulates proteolysis in reticulocyte extracts by repressing an endogenous protease inhibitor. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3577–3580. doi: 10.1073/pnas.80.12.3577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Takahashi-Nakamura M., Tsuji S., Suzuki K., Imahori K. Purification and characterization of an inhibitor of calcium-activated neutral protease from rabbit skeletal muscle. J Biochem. 1981 Dec;90(6):1583–1589. doi: 10.1093/oxfordjournals.jbchem.a133632. [DOI] [PubMed] [Google Scholar]
  41. Takano E., Murachi T. Purification and some properties of human erythrocyte calpastatin. J Biochem. 1982 Dec;92(6):2021–2028. doi: 10.1093/oxfordjournals.jbchem.a134134. [DOI] [PubMed] [Google Scholar]
  42. Waxman L., Fagan J. M., Tanaka K., Goldberg A. L. A soluble ATP-dependent system for protein degradation from murine erythroleukemia cells. Evidence for a protease which requires ATP hydrolysis but not ubiquitin. J Biol Chem. 1985 Oct 5;260(22):11994–12000. [PubMed] [Google Scholar]
  43. Waxman L., Krebs E. G. Identification of two protease inhibitors from bovine cardiac muscle. J Biol Chem. 1978 Sep 10;253(17):5888–5891. [PubMed] [Google Scholar]
  44. Zeman R. J., Kameyama T., Matsumoto K., Bernstein P., Etlinger J. D. Regulation of protein degradation in muscle by calcium. Evidence for enhanced nonlysosomal proteolysis associated with elevated cytosolic calcium. J Biol Chem. 1985 Nov 5;260(25):13619–13624. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES