Abstract
Two cDNAs encoding human delta-aminolevulinate dehydratase (ALA-D; porphobilinogen synthase; EC 4.2.1.24), the second enzyme in the heme biosynthetic pathway, were identified, recloned into bacteriophage M13, and sequenced by primer extension. The first clone with an 827-base-pair (bp) pEX-ALA-D cDNA insert, shown to contain DNA sequences that were colinear with four bovine ALA-D peptide sequences, was used to screen a pKT218 human liver library. A second clone containing a 1200-bp insert was identified that contained an open reading frame of 990 bp as well as 5' (66 bp)- and 3' (94 bp)-untranslated regions, the latter terminating in poly(dA). The predicted N-terminal amino acid sequence was colinear with the first 13 residues of microsequenced ALA-D purified from human erythrocytes. The ATG initiation codon was preceded by ACGCC, a functional initiation sequence, while an upstream (position -32), in-phase AACTG ATG sequence was entirely nonhomologous with the initiation consensus sequence and, therefore, presumed to be nonfunctional. The unusual polyadenylylation signal, AGTAAA, has been reported only in the human HRAS1 gene. The nucleotide sequences of the two cDNA clones differed at position 730 or 733 and encoded two differently charged amino acids. This nucleotide difference may be the basis for the polymorphic charge isozymes of human ALA-D. The sequence encoding this zinc metalloenzyme contained a cysteine- and histidine-rich binding site for zinc and an unusual region of charge complementarity surrounding the active lysine residue in the catalytic site.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson P. M., Desnick R. J. Purification and properties of delta-aminolevulinate dehydrase from human erythrocytes. J Biol Chem. 1979 Aug 10;254(15):6924–6930. [PubMed] [Google Scholar]
- Barnard G. F., Itoh R., Hohberger L. H., Shemin D. Mechanism of porphobilinogen synthase. Possible role of essential thiol groups. J Biol Chem. 1977 Dec 25;252(24):8965–8974. [PubMed] [Google Scholar]
- Battistuzzi G., Petrucci R., Silvagni L., Urbani F. R., Caiola S. delta-Aminolevulinate dehydrase: a new genetic polymorphism in man. Ann Hum Genet. 1981 Jul;45(Pt 3):223–229. doi: 10.1111/j.1469-1809.1981.tb00333.x. [DOI] [PubMed] [Google Scholar]
- Berk P. D., Tschudy D. P., Shepley L. A., Waggoner J. G., Berlin N. I. Hematologic and biochemical studies in a case of lead poisoning. Am J Med. 1970 Jan;48(1):137–144. doi: 10.1016/0002-9343(70)90109-9. [DOI] [PubMed] [Google Scholar]
- Bevan D. R., Bodlaender P., Shemin D. Mechanism of porphobilinogen synthase. Requirement of Zn2+ for enzyme activity. J Biol Chem. 1980 Mar 10;255(5):2030–2035. [PubMed] [Google Scholar]
- Birnstiel M. L., Busslinger M., Strub K. Transcription termination and 3' processing: the end is in site! Cell. 1985 Jun;41(2):349–359. doi: 10.1016/s0092-8674(85)80007-6. [DOI] [PubMed] [Google Scholar]
- Brennan M. J., Cantrill R. C. Delta-aminolaevulinic acid is a potent agonist for GABA autoreceptors. Nature. 1979 Aug 9;280(5722):514–515. doi: 10.1038/280514a0. [DOI] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
- DAGG J. H., GOLDBERG A., LOCHHEAD A., SMITH J. A. THE RELATIONSHIP OF LEAD POISONING TO ACUTE INTERMITTENT PORPHYRIA. Q J Med. 1965 Apr;34:163–175. [PubMed] [Google Scholar]
- Doss M., von Tiepermann R., Schneider J., Schmid H. New type of hepatic porphyria with porphobilinogen synthase defect and intermittent acute clinical manifestation. Klin Wochenschr. 1979 Oct 15;57(20):1123–1127. doi: 10.1007/BF01481493. [DOI] [PubMed] [Google Scholar]
- Eiberg H., Mohr J., Nielsen L. S. delta-Aminolevulinatedehydrase: synteny with ABO-AK1-ORM (and assignment to chromosome 9). Clin Genet. 1983 Feb;23(2):150–154. doi: 10.1111/j.1399-0004.1983.tb01864.x. [DOI] [PubMed] [Google Scholar]
- Finelli V. N., Klauder D. S., Karaffa M. A., Petering H. G. Interaction of zinc and lead on delta-aminolevulinate dehydratase. Biochem Biophys Res Commun. 1975 Jul 8;65(1):303–312. doi: 10.1016/s0006-291x(75)80093-3. [DOI] [PubMed] [Google Scholar]
- Gibbs P. N., Gore M. G., Jordan P. M. Investigation of the effect of metal ions on the reactivity of thiol groups in human 5-aminolaevulinate dehydratase. Biochem J. 1985 Feb 1;225(3):573–580. doi: 10.1042/bj2250573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbs P. N., Jordan P. M. Identification of lysine at the active site of human 5-aminolaevulinate dehydratase. Biochem J. 1986 Jun 1;236(2):447–451. doi: 10.1042/bj2360447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grandchamp B., Romeo P. H., Dubart A., Raich N., Rosa J., Nordmann Y., Goossens M. Molecular cloning of a cDNA sequence complementary to porphobilinogen deaminase mRNA from rat. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5036–5040. doi: 10.1073/pnas.81.16.5036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gurne D., Chen J., Shemin D. Dissociation and reassociation of immobilized porphobilinogen synthase: use of immobilized subunits for enzyme isolation. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1383–1387. doi: 10.1073/pnas.74.4.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe E. K., Salowe S. P., Chen N. T., DeHaven P. A. Porphobilinogen synthase modification with methylmethanethiosulfonate. A protocol for the investigation of metalloproteins. J Biol Chem. 1984 Apr 25;259(8):5032–5036. [PubMed] [Google Scholar]
- Jordan P. M., Gibbs P. N. Mechanism of action of 5-aminolaevulinate dehydratase from human erythrocytes. Biochem J. 1985 May 1;227(3):1015–1020. doi: 10.1042/bj2271015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lingner B., Kleinschmidt T. N-Terminale Sequenz einer Porphobilinogen-Synthase. Z Naturforsch C. 1983 Nov-Dec;38(11-12):1059–1061. doi: 10.1515/znc-1983-11-1229. [DOI] [PubMed] [Google Scholar]
- Morgan J. M., Burch H. B. Comparative tests for diagnosis of lead poisoning. Arch Intern Med. 1972 Sep;130(3):335–340. [PubMed] [Google Scholar]
- Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
- Reddy E. P. Nucleotide sequence analysis of the T24 human bladder carcinoma oncogene. Science. 1983 Jun 3;220(4601):1061–1063. doi: 10.1126/science.6844927. [DOI] [PubMed] [Google Scholar]
- Romeo P. H., Dubart A., Grandchamp B., de Verneuil H., Rosa J., Nordmann Y., Goossens M. Isolation and identification of a cDNA clone coding for rat uroporphyrinogen decarboxylase. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3346–3350. doi: 10.1073/pnas.81.11.3346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F. Determination of nucleotide sequences in DNA. Science. 1981 Dec 11;214(4526):1205–1210. doi: 10.1126/science.7302589. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Tsukamoto I., Yoshinaga T., Sano S. The role of zinc with special reference to the essential thiol groups in delta-aminolevulinic acid dehydratase of bovine liver. Biochim Biophys Acta. 1979 Sep 12;570(1):167–178. doi: 10.1016/0005-2744(79)90211-0. [DOI] [PubMed] [Google Scholar]
- Tsukamoto I., Yoshinaga T., Sano S. Zinc and cysteine residues in the active site of bovine liver delta-aminolevulinic acid dehydratase. Int J Biochem. 1980;12(5-6):751–756. doi: 10.1016/0020-711x(80)90157-3. [DOI] [PubMed] [Google Scholar]
- Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
- Wang A. L., Astrin K. H., Anderson W. F., Desnick R. J. delta-Aminolevulinate dehydratase: induced expression and regional assignment of the human gene to chromosome 9q13----qter. Hum Genet. 1985;70(1):6–10. doi: 10.1007/BF00389449. [DOI] [PubMed] [Google Scholar]
- Wetmur J. G., Bishop D. F., Ostasiewicz L., Desnick R. J. Molecular cloning of a cDNA for human delta-aminolevulinate dehydratase. Gene. 1986;43(1-2):123–130. doi: 10.1016/0378-1119(86)90015-6. [DOI] [PubMed] [Google Scholar]
- Wilbur W. J., Lipman D. J. Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci U S A. 1983 Feb;80(3):726–730. doi: 10.1073/pnas.80.3.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods D. E., Markham A. F., Ricker A. T., Goldberger G., Colten H. R. Isolation of cDNA clones for the human complement protein factor B, a class III major histocompatibility complex gene product. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5661–5665. doi: 10.1073/pnas.79.18.5661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu W. H., Shemin D., Richards K. E., Williams R. C. The quaternary structure of delta-aminolevulinic acid dehydratase from bovine liver. Proc Natl Acad Sci U S A. 1974 May;71(5):1767–1770. doi: 10.1073/pnas.71.5.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto M., Yew N. S., Federspiel M., Dodgson J. B., Hayashi N., Engel J. D. Isolation of recombinant cDNAs encoding chicken erythroid delta-aminolevulinate synthase. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3702–3706. doi: 10.1073/pnas.82.11.3702. [DOI] [PMC free article] [PubMed] [Google Scholar]