Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Oct;83(20):7893–7897. doi: 10.1073/pnas.83.20.7893

Lymphokine-activated killer cells targeted by monoclonal antibodies to the disialogangliosides GD2 and GD3 specifically lyse human tumor cells of neuroectodermal origin.

C J Honsik, G Jung, R A Reisfeld
PMCID: PMC386829  PMID: 3094017

Abstract

Monoclonal antibodies 14.18 (IgG3) and 11C64 (IgG3) directed against disialogangliosides GD2 and GD3, respectively, when used in conjunction with human peripheral blood mononuclear cells (PBMCs) stimulated with human recombinant interleukin (rIL-2) lyse both human melanoma and neuroblastoma cells by antibody-dependent cellular cytotoxicity. Such monoclonal antibody-"armed" effector cells are specifically directed to targets expressing the given disialoganglioside without detectable cross-reactivity. In addition, antibody-dependent cellular cytotoxicity as well as the natural killing ability of human PBMCs is augmented by a brief coincubation with rIL-2. PBMCs augmented by rIL-2 and armed with monoclonal antibodies significantly suppressed tumor growth in the xenotransplant nude mouse model. Our results suggest that once a threshold level of activation of PBMCs is achieved, additional rIL-2 (over three orders of magnitude of concentration) does not significantly enhance cytolytic augmentation. Furthermore, anti-GD3 monoclonal antibody 11C64 together with rIL-2-stimulated PBMCs from melanoma patients with widely differing tumor burdens effectively lyse melanoma tumor targets in antibody-dependent cellular cytotoxicity. Our results also suggest that GD2 and GD3 represent distinct and relevant immunotherapeutic target structures on melanoma whereas GD2 does the same for neuroblastoma tumors. Our data suggest that targeting of activated human effector cells may provide a new and effective cancer immunotherapy protocol.

Full text

PDF
7893

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheresh D. A., Harper J. R., Schulz G., Reisfeld R. A. Localization of the gangliosides GD2 and GD3 in adhesion plaques and on the surface of human melanoma cells. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5767–5771. doi: 10.1073/pnas.81.18.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cheresh D. A., Honsik C. J., Staffileno L. K., Jung G., Reisfeld R. A. Disialoganglioside GD3 on human melanoma serves as a relevant target antigen for monoclonal antibody-mediated tumor cytolysis. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5155–5159. doi: 10.1073/pnas.82.15.5155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dippold W. G., Knuth A., Meyer zum Büschenfelde K. H. Inhibition of human melanoma cell growth in vitro by monoclonal anti-GD3-ganglioside antibody. Cancer Res. 1984 Feb;44(2):806–810. [PubMed] [Google Scholar]
  4. Dippold W. G., Lloyd K. O., Li L. T., Ikeda H., Oettgen H. F., Old L. J. Cell surface antigens of human malignant melanoma: definition of six antigenic systems with mouse monoclonal antibodies. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6114–6118. doi: 10.1073/pnas.77.10.6114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  6. Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982 Jun 1;155(6):1823–1841. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grimm E. A., Robb R. J., Roth J. A., Neckers L. M., Lachman L. B., Wilson D. J., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. III. Evidence that IL-2 is sufficient for direct activation of peripheral blood lymphocytes into lymphokine-activated killer cells. J Exp Med. 1983 Oct 1;158(4):1356–1361. doi: 10.1084/jem.158.4.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hellström I., Brankovan V., Hellström K. E. Strong antitumor activities of IgG3 antibodies to a human melanoma-associated ganglioside. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1499–1502. doi: 10.1073/pnas.82.5.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Houghton A. N., Mintzer D., Cordon-Cardo C., Welt S., Fliegel B., Vadhan S., Carswell E., Melamed M. R., Oettgen H. F., Old L. J. Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1242–1246. doi: 10.1073/pnas.82.4.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lotze M. T., Grimm E. A., Mazumder A., Strausser J. L., Rosenberg S. A. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res. 1981 Nov;41(11 Pt 1):4420–4425. [PubMed] [Google Scholar]
  11. Perez P., Hoffman R. W., Titus J. A., Segal D. M. Specific targeting of human peripheral blood T cells by heteroaggregates containing anti-T3 crosslinked to anti-target cell antibodies. J Exp Med. 1986 Jan 1;163(1):166–178. doi: 10.1084/jem.163.1.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pukel C. S., Lloyd K. O., Travassos L. R., Dippold W. G., Oettgen H. F., Old L. J. GD3, a prominent ganglioside of human melanoma. Detection and characterisation by mouse monoclonal antibody. J Exp Med. 1982 Apr 1;155(4):1133–1147. doi: 10.1084/jem.155.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rosenberg S. A., Lotze M. T., Muul L. M., Leitman S., Chang A. E., Ettinghausen S. E., Matory Y. L., Skibber J. M., Shiloni E., Vetto J. T. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med. 1985 Dec 5;313(23):1485–1492. doi: 10.1056/NEJM198512053132327. [DOI] [PubMed] [Google Scholar]
  14. SVENNERHOLM L. CHROMATOGRAPHIC SEPARATION OF HUMAN BRAIN GANGLIOSIDES. J Neurochem. 1963 Sep;10:613–623. doi: 10.1111/j.1471-4159.1963.tb08933.x. [DOI] [PubMed] [Google Scholar]
  15. Steplewski Z., Spira G., Blaszczyk M., Lubeck M. D., Radbruch A., Illges H., Herlyn D., Rajewsky K., Scharff M. Isolation and characterization of anti-monosialoganglioside monoclonal antibody 19-9 class-switch variants. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8653–8657. doi: 10.1073/pnas.82.24.8653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Svedersky L. P., Shepard H. M., Spencer S. A., Shalaby M. R., Palladino M. A. Augmentation of human natural cell-mediated cytotoxicity by recombinant human interleukin 2. J Immunol. 1984 Aug;133(2):714–718. [PubMed] [Google Scholar]
  17. Wang A., Lu S. D., Mark D. F. Site-specific mutagenesis of the human interleukin-2 gene: structure-function analysis of the cysteine residues. Science. 1984 Jun 29;224(4656):1431–1433. doi: 10.1126/science.6427925. [DOI] [PubMed] [Google Scholar]
  18. Yron I., Wood T. A., Jr, Spiess P. J., Rosenberg S. A. In vitro growth of murine T cells. V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors. J Immunol. 1980 Jul;125(1):238–245. [PubMed] [Google Scholar]
  19. Ziccardi R. J., Dahlback B., Müller-Eberhard H. J. Characterization of the interaction of human C4b-binding protein with physiological ligands. J Biol Chem. 1984 Nov 25;259(22):13674–13679. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES