Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Oct;83(20):7966–7970. doi: 10.1073/pnas.83.20.7966

Sodium-dependent regenerative responses in dendrites of axotomized motoneurons in the cat.

E Sernagor, Y Yarom, R Werman
PMCID: PMC386845  PMID: 2429323

Abstract

Ten days after extradural axotomy, partial spikes are found in greater than 20% of cat L7 motoneurons, while 15-21 days after axotomy the incidence increases to 60%. These responses are produced in excitable (hot) spots in the dendrites by synaptic excitation. Intracellular injection of QX-314, a lidocaine derivative and effective blocker of Na+ channels from within neurons, results in elimination of partial spikes before blocking somadendritic spikes. The action of QX-314 does not depend on changes in passive membrane properties or on changes in synaptic properties. Injections of Cs+ and Cl- ions rule out any major role for calcium, potassium, or chloride currents in the production of partial spikes. The partial spikes represent an unusual Na+-dependent dendritic phenomenon induced by axotomy when carried out relatively near the soma. It is reasonable to postulate that the partial spikes result from a higher concentration of Na+ channels in the dendrites. This may be the consequence of a high rate of production of Na+-channel proteins that are intended for the cut end of the axon; alternatively, they may result from the reflection from the cut end of such proteins produced at either a normal or an increased rate. These aberrant channels are inserted into somatic and dendritic membranes in higher concentrations than normal and, as well as producing local dendritic regions of low safety factor responsible for the partial spikes, also produce somadendritic spikes of unusually fast rise time and lower than usual threshold, which are relatively resistant to QX-314.

Full text

PDF
7966

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blinzinger K., Kreutzberg G. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat. 1968;85(2):145–157. doi: 10.1007/BF00325030. [DOI] [PubMed] [Google Scholar]
  2. Chen D. H. Qualitative and quantitative study of synaptic displacement in chromatolyzed spinal motoneurons of the cat. J Comp Neurol. 1978 Feb 15;177(4):635–664. doi: 10.1002/cne.901770407. [DOI] [PubMed] [Google Scholar]
  3. Connors B. W., Prince D. A. Effects of local anesthetic QX-314 on the membrane properties of hippocampal pyramidal neurons. J Pharmacol Exp Ther. 1982 Mar;220(3):476–481. [PubMed] [Google Scholar]
  4. DOWNMAN C. B. B., ECCLES J. C., MCINTYRE A. K. Functional changes in chromatolysed motoneurones. J Comp Neurol. 1953 Feb;98(1):9–36. doi: 10.1002/cne.900980104. [DOI] [PubMed] [Google Scholar]
  5. ECCLES J. C., LIBET B., YOUNG R. R. The behaviour of chromatolysed motoneurones studied by intracellular recording. J Physiol. 1958 Aug 29;143(1):11–40. doi: 10.1113/jphysiol.1958.sp006041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flatman J. A., Engberg I., Lambert J. D. Reversibility of Ia EPSP investigated with intracellularly iontophoresed QX-222. J Neurophysiol. 1982 Aug;48(2):419–430. doi: 10.1152/jn.1982.48.2.419. [DOI] [PubMed] [Google Scholar]
  7. Frazier D. T., Narahashi T., Yamada M. The site of action and active form of local anesthetics. II. Experiments with quaternary compounds. J Pharmacol Exp Ther. 1970 Jan;171(1):45–51. [PubMed] [Google Scholar]
  8. Goodman C. S., Heitler W. J. Electrical properties of insect neurones with spiking and non-spiking somata: normal, axotomized, and colchicine-treated neurones. J Exp Biol. 1979 Dec;83:95–121. doi: 10.1242/jeb.83.1.95. [DOI] [PubMed] [Google Scholar]
  9. Gustafsson B. Changes in motoneurone electrical properties following axotomy. J Physiol. 1979 Aug;293:197–215. doi: 10.1113/jphysiol.1979.sp012885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gustafsson B., Pinter M. J. Effects of axotomy on the distribution of passive electrical properties of cat motoneurones. J Physiol. 1984 Nov;356:433–442. doi: 10.1113/jphysiol.1984.sp015474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jahnsen H., Llinás R. Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol. 1984 Apr;349:227–247. doi: 10.1113/jphysiol.1984.sp015154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jefferys J. G. Initiation and spread of action potentials in granule cells maintained in vitro in slices of guinea-pig hippocampus. J Physiol. 1979 Apr;289:375–388. doi: 10.1113/jphysiol.1979.sp012742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kellerth J. O., Mellström A., Skoglund S. Postnatal excitability changes of kitten motoneurones. Acta Physiol Scand. 1971 Sep;83(1):31–41. doi: 10.1111/j.1748-1716.1971.tb05048.x. [DOI] [PubMed] [Google Scholar]
  14. Kita T., Kita H., Kitai S. T. Local stimulation induced GABAergic response in rat striatal slice preparations: intracellular recordings on QX-314 injected neurons. Brain Res. 1985 Dec 23;360(1-2):304–310. doi: 10.1016/0006-8993(85)91246-6. [DOI] [PubMed] [Google Scholar]
  15. Kuno M., Llinás R. Alterations of synaptic action in chromatolysed motoneurones of the cat. J Physiol. 1970 Nov;210(4):823–838. doi: 10.1113/jphysiol.1970.sp009244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuno M., Llinás R. Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurones of the cat. J Physiol. 1970 Nov;210(4):807–821. doi: 10.1113/jphysiol.1970.sp009243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuno M., Miyata Y., Muñoz-Martinez E. J. Differential reaction of fast and slow alpha-motoneurones to axotomy. J Physiol. 1974 Aug;240(3):725–739. doi: 10.1113/jphysiol.1974.sp010631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kuwada J. Y. Ionic and metabolic dependence of axotomy-induced somatic membrane changes in crayfish. J Physiol. 1981 Aug;317:463–473. doi: 10.1113/jphysiol.1981.sp013836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lieberman A. R. The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol. 1971;14:49–124. doi: 10.1016/s0074-7742(08)60183-x. [DOI] [PubMed] [Google Scholar]
  20. Llinás R. Electroresponsive properties of dendrites in central neurons. Adv Neurol. 1975;12:1–13. [PubMed] [Google Scholar]
  21. Llinás R., Greenfield S. A., Jahnsen H. Electrophysiology of pars compacta cells in the in vitro substantia nigra--a possible mechanism for dendritic release. Brain Res. 1984 Feb 27;294(1):127–132. doi: 10.1016/0006-8993(84)91316-7. [DOI] [PubMed] [Google Scholar]
  22. Llinás R., Hess R. Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2520–2523. doi: 10.1073/pnas.73.7.2520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Llinás R., Sugimori M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol. 1980 Aug;305:197–213. doi: 10.1113/jphysiol.1980.sp013358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Llinás R., Yarom Y. Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol. 1981 Jun;315:569–584. doi: 10.1113/jphysiol.1981.sp013764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lombet A., Laduron P., Mourre C., Jacomet Y., Lazdunski M. Axonal transport of the voltage-dependent Na+ channel protein identified by its tetrodotoxin binding site in rat sciatic nerves. Brain Res. 1985 Oct 14;345(1):153–158. doi: 10.1016/0006-8993(85)90846-7. [DOI] [PubMed] [Google Scholar]
  26. McINTYRE A. K., BRADLEY K., BROCK L. G. Responses of motoneurons undergoing chromatolysis. J Gen Physiol. 1959 May 20;42(5):931–958. doi: 10.1085/jgp.42.5.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mendell L. M., Munson J. B., Scott J. G. Alterations of synapses on axotomized motoneurones. J Physiol. 1976 Feb;255(1):67–79. doi: 10.1113/jphysiol.1976.sp011270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Murase K., Randić M. Electrophysiological properties of rat spinal dorsal horn neurones in vitro: calcium-dependent action potentials. J Physiol. 1983 Jan;334:141–153. doi: 10.1113/jphysiol.1983.sp014485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Murray M., Grafstein B. Changes in the morphology and amino acid incorporation of regenerating goldfish optic neurons. Exp Neurol. 1969 Apr;23(4):544–560. doi: 10.1016/0014-4886(69)90124-1. [DOI] [PubMed] [Google Scholar]
  30. Neher E., Steinbach J. H. Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J Physiol. 1978 Apr;277:153–176. doi: 10.1113/jphysiol.1978.sp012267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Neher E. The charge carried by single-channel currents of rat cultured muscle cells in the presence of local anaesthetics. J Physiol. 1983 Jun;339:663–678. doi: 10.1113/jphysiol.1983.sp014741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pitman R. M. The ionic dependence of action potentials induced by colchicine in an insect motoneurone cell body. J Physiol. 1975 May;247(2):511–520. doi: 10.1113/jphysiol.1975.sp010944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pitman R. M., Tweedle C. D., Cohen M. J. Electrical responses of insect central neurons: augmentation by nerve section or colchicine. Science. 1972 Nov 3;178(4060):507–509. doi: 10.1126/science.178.4060.507. [DOI] [PubMed] [Google Scholar]
  34. Puil E., Carlen P. L. Attenuation of glutamate-action, excitatory postsynaptic potentials, and spikes by intracellular QX 222 in hippocampal neurons. Neuroscience. 1984 Feb;11(2):389–398. doi: 10.1016/0306-4522(84)90031-9. [DOI] [PubMed] [Google Scholar]
  35. Puil E., Werman R. Internal cesium ions block various K conductances in spinal motoneurons. Can J Physiol Pharmacol. 1981 Dec;59(12):1280–1284. doi: 10.1139/y81-201. [DOI] [PubMed] [Google Scholar]
  36. Roederer E., Cohen M. J. Regeneration of an identified central neuron in the cricket. II. Electrical and morphological responses of the soma. J Neurosci. 1983 Sep;3(9):1848–1859. doi: 10.1523/JNEUROSCI.03-09-01848.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schwartzkroin P. A., Slawsky M. Probable calcium spikes in hippocampal neurons. Brain Res. 1977 Oct 21;135(1):157–161. doi: 10.1016/0006-8993(77)91060-5. [DOI] [PubMed] [Google Scholar]
  38. Takata M., Shohara E., Fujita S. The excitability of hypoglossal motoneurons undergoing chromatolysis. Neuroscience. 1980;5(2):413–419. doi: 10.1016/0306-4522(80)90116-5. [DOI] [PubMed] [Google Scholar]
  39. Wong R. K., Prince D. A. Participation of calcium spikes during intrinsic burst firing in hippocampal neurons. Brain Res. 1978 Dec 29;159(2):385–390. doi: 10.1016/0006-8993(78)90544-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES