Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Nov;83(21):8087–8091. doi: 10.1073/pnas.83.21.8087

Role of epididymal inflammation in the induction of dominant lethal mutations in Fischer 344 rat sperm by methyl chloride.

G J Chellman, J S Bus, P K Working
PMCID: PMC386872  PMID: 3095827

Abstract

This study assessed the possible relationship between methyl chloride (MeCl)-induced epididymal inflammation and the formation of dominant lethal mutations in sperm of Fischer 344 rats. Groups of 40 males were exposed to MeCl (3000 ppm 6 hr/day for 5 days), with or without concurrent treatment with the anti-inflammatory agent 3-amino-1-[m-(trifluoromethyl)phenyl]-2-pyrazoline (BW 755C; 10 mg/kg, i.p. 1 hr pre- and postexposure); BW 755C was shown previously to inhibit MeCl-induced epididymal inflammation. Control groups (n = 20) were either untreated, injected as described above with BW 755C, or injected on the afternoon of day 5 with triethylenemelamine (0.2 mg/kg), a known dominant lethal mutagen. Each male was caged with one female weekly for 3 weeks; 12-18 days after mating, females were killed to assess dominant lethal parameters. In females bred to MeCl-exposed males, significant increases were observed in postimplantation loss at postexposure week 1 (0.84 dead implants per female vs. 0.29 in untreated controls) and in dead implants/total implants at both week 1 (0.10 vs. 0.04 control) and week 2 (0.24 vs. 0.06 control). These increases were not observed in females bred to males treated with BW 755C during MeCl exposure. Coadministration of BW 755C to males along with MeCl also reduced the percentage of mated females with two or more postimplantation losses from 31% to 8% (week 1) and 30% to 12% (week 2). Therefore, the dominant lethal mutations induced by MeCl appear to be a consequence of its induction of inflammation in the epididymis. These data demonstrate the potential genotoxicity of inflammatory processes in vivo.

Full text

PDF
8087

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. P. Use of animal models for detecting specific alterations in reproduction. Fundam Appl Toxicol. 1982 Jan-Feb;2(1):13–26. doi: 10.1016/s0272-0590(82)80059-6. [DOI] [PubMed] [Google Scholar]
  2. Badwey J. A., Karnovsky M. L. Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem. 1980;49:695–726. doi: 10.1146/annurev.bi.49.070180.003403. [DOI] [PubMed] [Google Scholar]
  3. Blazak W. F., Ernst T. L., Stewart B. E. Potential indicators of reproductive toxicity: testicular sperm production and epididymal sperm number, transit time, and motility in Fischer 344 rats. Fundam Appl Toxicol. 1985 Dec;5(6 Pt 1):1097–1103. doi: 10.1016/0272-0590(85)90145-9. [DOI] [PubMed] [Google Scholar]
  4. Brewen J. G., Payne H. S., Jones K. P., Preston R. J. Studies on chemically induced dominant lethality. I. The cytogenetic basis of MMS-induced dominant lethality in post-meiotic male germ cells. Mutat Res. 1975 Dec;33(2-3):239–250. doi: 10.1016/0027-5107(75)90200-6. [DOI] [PubMed] [Google Scholar]
  5. Cerutti P. A. Prooxidant states and tumor promotion. Science. 1985 Jan 25;227(4685):375–381. doi: 10.1126/science.2981433. [DOI] [PubMed] [Google Scholar]
  6. Chapin R. E., White R. D., Morgan K. T., Bus J. S. Studies of lesions induced in the testis and epididymis of F-344 rats by inhaled methyl chloride. Toxicol Appl Pharmacol. 1984 Nov;76(2):328–343. doi: 10.1016/0041-008x(84)90014-0. [DOI] [PubMed] [Google Scholar]
  7. Chellman G. J., Morgan K. T., Bus J. S., Working P. K. Inhibition of methyl chloride toxicity in male F-344 rats by the anti-inflammatory agent BW755C. Toxicol Appl Pharmacol. 1986 Sep 30;85(3):367–379. doi: 10.1016/0041-008x(86)90344-3. [DOI] [PubMed] [Google Scholar]
  8. Egan R. W., Tischler A. N., Baptista E. M., Ham E. A., Soderman D. D., Gale P. H. Specific inhibition and oxidative regulation of 5-lipoxygenase. Adv Prostaglandin Thromboxane Leukot Res. 1983;11:151–157. [PubMed] [Google Scholar]
  9. Fostel J., Allen P. F., Bermudez E., Kligerman A. D., Wilmer J. L., Skopek T. R. Assessment of the genotoxic effects of methyl chloride in human lymphoblasts. Mutat Res. 1985 Jan-Feb;155(1-2):75–81. doi: 10.1016/0165-1218(85)90028-x. [DOI] [PubMed] [Google Scholar]
  10. Fulton A. M., Loveless S. E., Heppner G. H. Mutagenic activity of tumor-associated macrophages in Salmonella typhimurium strains TA98 and TA 100. Cancer Res. 1984 Oct;44(10):4308–4311. [PubMed] [Google Scholar]
  11. Gescher A., Brodie A. E., Reed D. J. Oxidative properties of 12-O-tetradecanoylphorbol-13-acetate-stimulated human blood monomorphonuclear leukocytes and their toxicity against a human lung carcinoma cell line. Cancer Res. 1985 Apr;45(4):1638–1643. [PubMed] [Google Scholar]
  12. Goldstein B. D., Witz G., Amoruso M., Stone D. S., Troll W. Stimulation of human polymorphonuclear leukocyte superoxide anion radical production by tumor promoters. Cancer Lett. 1981 Jan;11(3):257–262. doi: 10.1016/0304-3835(81)90117-8. [DOI] [PubMed] [Google Scholar]
  13. Green S., Auletta A., Fabricant J., Kapp R., Manandhar M., Sheu C. J., Springer J., Whitfield B. Current status of bioassays in genetic toxicology--the dominant lethal assay. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res. 1985 Jul;154(1):49–67. doi: 10.1016/0165-1110(85)90009-0. [DOI] [PubMed] [Google Scholar]
  14. Higgs G. A., Flower R. J., Vane J. R. A new approach to anti-inflammatory drugs. Biochem Pharmacol. 1979 Jun 15;28(12):1959–1961. doi: 10.1016/0006-2952(79)90651-8. [DOI] [PubMed] [Google Scholar]
  15. Kornbrust D. J., Bus J. S., Doerjer G., Swenberg J. A. Association of inhaled [14C]methyl chloride with macromolecules from various rat tissues. Toxicol Appl Pharmacol. 1982 Aug;65(1):122–134. doi: 10.1016/0041-008x(82)90370-2. [DOI] [PubMed] [Google Scholar]
  16. LEBLOND C. P., CLERMONT Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci. 1952 Nov 20;55(4):548–573. doi: 10.1111/j.1749-6632.1952.tb26576.x. [DOI] [PubMed] [Google Scholar]
  17. Lewis J. G., Adams D. O. Induction of 5,6-ring-saturated thymine bases in NIH-3T3 cells by phorbol ester-stimulated macrophages: role of reactive oxygen intermediates. Cancer Res. 1985 Mar;45(3):1270–1275. [PubMed] [Google Scholar]
  18. Lewis R. A., Austen K. F. Mediation of local homeostasis and inflammation by leukotrienes and other mast cell-dependent compounds. Nature. 1981 Sep 10;293(5828):103–108. doi: 10.1038/293103a0. [DOI] [PubMed] [Google Scholar]
  19. Orgebin-Crist M. C. Passage of spermatozoa labelled with thymidine-3-H through the ductus epididymidis of the rabbit. J Reprod Fertil. 1965 Oct;10(2):241–251. doi: 10.1530/jrf.0.0100241. [DOI] [PubMed] [Google Scholar]
  20. Peter H., Laib R. J., Ottenwälder H., Topp H., Rupprich N., Bolt H. M. DNA-binding assay of methyl chloride. Arch Toxicol. 1985 Jun;57(2):84–87. doi: 10.1007/BF00343115. [DOI] [PubMed] [Google Scholar]
  21. Raynor T. H., White E. L., Cheplen J. M., Sherrill J. M., Hamm T. E., Jr An evaluation of a water purification system for use in animal facilities. Lab Anim. 1984 Jan;18(1):45–51. doi: 10.1258/002367784780864983. [DOI] [PubMed] [Google Scholar]
  22. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983 May 6;220(4597):568–575. doi: 10.1126/science.6301011. [DOI] [PubMed] [Google Scholar]
  23. Sega G. A., Owens J. G. Ethylation of DNA and protamine by ethyl methanesulfonate in the germ cells of male mice and the relevancy of these molecular targets to the induction of dominant lethals. Mutat Res. 1978 Oct;52(1):87–106. doi: 10.1016/0027-5107(78)90098-2. [DOI] [PubMed] [Google Scholar]
  24. Sega G. A., Owens J. G. Methylation of DNA and protamine by methyl methanesulfonate in the germ cells of male mice. Mutat Res. 1983 Oct;111(2):227–244. doi: 10.1016/0027-5107(83)90066-0. [DOI] [PubMed] [Google Scholar]
  25. Sotomayor R. E., Sega G. A., Cumming R. B. Unscheduled DNA synthesis in spermatogenic cells of mice treated in vivo with the indirect alkylating agents cyclophosphamide and mitomen. Mutat Res. 1978 May;50(2):229–240. doi: 10.1016/0027-5107(78)90027-1. [DOI] [PubMed] [Google Scholar]
  26. Weiss S. J., Lampert M. B., Test S. T. Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science. 1983 Nov 11;222(4624):625–628. doi: 10.1126/science.6635660. [DOI] [PubMed] [Google Scholar]
  27. Weiss S. J., LoBuglio A. F. Phagocyte-generated oxygen metabolites and cellular injury. Lab Invest. 1982 Jul;47(1):5–18. [PubMed] [Google Scholar]
  28. Weitberg A. B., Weitzman S. A., Destrempes M., Latt S. A., Stossel T. P. Stimulated human phagocytes produce cytogenetic changes in cultured mammalian cells. N Engl J Med. 1983 Jan 6;308(1):26–30. doi: 10.1056/NEJM198301063080107. [DOI] [PubMed] [Google Scholar]
  29. Weitzman S. A., Stossel T. P. Effects of oxygen radical scavengers and antioxidants on phagocyte-induced mutagenesis. J Immunol. 1982 Jun;128(6):2770–2772. [PubMed] [Google Scholar]
  30. Weitzman S. A., Stossel T. P. Mutation caused by human phagocytes. Science. 1981 May 1;212(4494):546–547. doi: 10.1126/science.6259738. [DOI] [PubMed] [Google Scholar]
  31. Weitzman S. A., Weitberg A. B., Clark E. P., Stossel T. P. Phagocytes as carcinogens: malignant transformation produced by human neutrophils. Science. 1985 Mar 8;227(4691):1231–1233. doi: 10.1126/science.3975611. [DOI] [PubMed] [Google Scholar]
  32. Working P. K., Bus J. S. Failure of fertilization as a cause of preimplantation loss induced by methyl chloride in Fischer 344 rats. Toxicol Appl Pharmacol. 1986 Oct;86(1):124–130. doi: 10.1016/0041-008x(86)90405-9. [DOI] [PubMed] [Google Scholar]
  33. Working P. K., Bus J. S., Hamm T. E., Jr Reproductive effects of inhaled methyl chloride in the male Fischer 344 rat. I. Mating performance and dominant lethal assay. Toxicol Appl Pharmacol. 1985 Jan;77(1):133–143. doi: 10.1016/0041-008x(85)90274-1. [DOI] [PubMed] [Google Scholar]
  34. Working P. K., Bus J. S., Hamm T. E., Jr Reproductive effects of inhaled methyl chloride in the male Fischer 344 rat. II. Spermatogonial toxicity and sperm quality. Toxicol Appl Pharmacol. 1985 Jan;77(1):144–157. doi: 10.1016/0041-008x(85)90275-3. [DOI] [PubMed] [Google Scholar]
  35. Working P. K., Butterworth B. E. An assay to detect chemically induced DNA repair in rat spermatocytes. Environ Mutagen. 1984;6(3):273–286. doi: 10.1002/em.2860060304. [DOI] [PubMed] [Google Scholar]
  36. Working P. K., Doolittle D. J., Smith-Oliver T., White R. D., Butterworth B. E. Unscheduled DNA synthesis in rat tracheal epithelial cells, hepatocytes and spermatocytes following exposure to methyl chloride in vitro and in vivo. Mutat Res. 1986 Sep;162(2):219–224. doi: 10.1016/0027-5107(86)90088-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES