Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Aug 6;93(16):8437–8442. doi: 10.1073/pnas.93.16.8437

Fused polycationic peptide mediates delivery of diphtheria toxin A chain to the cytosol in the presence of anthrax protective antigen.

S R Blanke 1, J C Milne 1, E L Benson 1, R J Collier 1
PMCID: PMC38689  PMID: 8710889

Abstract

The lethal factor (LF) and edema factor (EF) of anthrax toxin bind by means of their amino-terminal domains to protective antigen (PA) on the surface of toxin-sensitive cells and are translocated to the cytosol, where they act on intracellular targets. Genetically fusing the amino-terminal domain of LF (LFN; residues 1-255) to certain heterologous proteins has been shown to potentiate these proteins for PA-dependent delivery to the cytosol. We report here that short tracts of lysine, arginine, or histidine residues can also potentiate a protein for such PA-dependent delivery. Fusion of these polycationic tracts to the amino terminus of the enzymic A chain of diphtheria toxin (DTA; residues 1-193) enabled it to be translocated to the cytosol by PA and inhibit protein synthesis. The efficiency of translocation was dependent on tract length: (LFN > Lys8 > Lys6 > Lys3). Lys6 was approximately 100-fold more active than Arg6 or His6, whereas Glu6 and (SerSerGly)2 were inactive. Arg6DTA was partially degraded in cell culture, which may explain its low activity relative to that of Lys6DTA. The polycationic tracts may bind to anionic sites at the cell surface (possibly on PA), allowing the fusion proteins to be coendocytosed with PA and delivered to the endosome, where translocation to the cytosol occurs. Excess free LFN blocked the action of LFNDTA, but not of Lys6DTA. This implies that binding to the LF/EF site is not an obligatory step in translocation and suggests that the polycationic tag binds to a different site. Besides elucidating the process of translocation in anthrax toxin, these findings may aid in developing systems to deliver heterologous proteins and peptides to the cytoplasm of mammalian cells.

Full text

PDF
8437

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arora N., Leppla S. H. Fusions of anthrax toxin lethal factor with shiga toxin and diphtheria toxin enzymatic domains are toxic to mammalian cells. Infect Immun. 1994 Nov;62(11):4955–4961. doi: 10.1128/iai.62.11.4955-4961.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arora N., Leppla S. H. Residues 1-254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides. J Biol Chem. 1993 Feb 15;268(5):3334–3341. [PubMed] [Google Scholar]
  3. Arora N., Williamson L. C., Leppla S. H., Halpern J. L. Cytotoxic effects of a chimeric protein consisting of tetanus toxin light chain and anthrax toxin lethal factor in non-neuronal cells. J Biol Chem. 1994 Oct 21;269(42):26165–26171. [PubMed] [Google Scholar]
  4. Bhakdi S., Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev. 1991 Dec;55(4):733–751. doi: 10.1128/mr.55.4.733-751.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhakdi S., Tranum-Jensen J. Damage to mammalian cells by proteins that form transmembrane pores. Rev Physiol Biochem Pharmacol. 1987;107:147–223. doi: 10.1007/BFb0027646. [DOI] [PubMed] [Google Scholar]
  6. Bhakdi S., Tranum-Jensen J. Membrane damage by channel-forming proteins: staphylococcal alpha-toxin, streptolysin-O and the C5b-9 complement complex. Biochem Soc Symp. 1985;50:221–233. [PubMed] [Google Scholar]
  7. Blanke S. R., Huang K., Wilson B. A., Papini E., Covacci A., Collier R. J. Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2. Biochemistry. 1994 May 3;33(17):5155–5161. doi: 10.1021/bi00183a019. [DOI] [PubMed] [Google Scholar]
  8. Blaustein R. O., Koehler T. M., Collier R. J., Finkelstein A. Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2209–2213. doi: 10.1073/pnas.86.7.2209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bragg T. S., Robertson D. L. Nucleotide sequence and analysis of the lethal factor gene (lef) from Bacillus anthracis. Gene. 1989 Sep 1;81(1):45–54. doi: 10.1016/0378-1119(89)90335-1. [DOI] [PubMed] [Google Scholar]
  10. Considine R. V., Simpson L. L. Cellular and molecular actions of binary toxins possessing ADP-ribosyltransferase activity. Toxicon. 1991;29(8):913–936. doi: 10.1016/0041-0101(91)90076-4. [DOI] [PubMed] [Google Scholar]
  11. Escuyer V., Collier R. J. Anthrax protective antigen interacts with a specific receptor on the surface of CHO-K1 cells. Infect Immun. 1991 Oct;59(10):3381–3386. doi: 10.1128/iai.59.10.3381-3386.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Falnes P. O., Choe S., Madshus I. H., Wilson B. A., Olsnes S. Inhibition of membrane translocation of diphtheria toxin A-fragment by internal disulfide bridges. J Biol Chem. 1994 Mar 18;269(11):8402–8407. [PubMed] [Google Scholar]
  13. Friedlander A. M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem. 1986 Jun 5;261(16):7123–7126. [PubMed] [Google Scholar]
  14. Gordon V. M., Leppla S. H., Hewlett E. L. Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin. Infect Immun. 1988 May;56(5):1066–1069. doi: 10.1128/iai.56.5.1066-1069.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hanna P. C., Acosta D., Collier R. J. On the role of macrophages in anthrax. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10198–10201. doi: 10.1073/pnas.90.21.10198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hanna P. C., Kochi S., Collier R. J. Biochemical and physiological changes induced by anthrax lethal toxin in J774 macrophage-like cells. Mol Biol Cell. 1992 Nov;3(11):1269–1277. doi: 10.1091/mbc.3.11.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hanna P. C., Kruskal B. A., Ezekowitz R. A., Bloom B. R., Collier R. J. Role of macrophage oxidative burst in the action of anthrax lethal toxin. Mol Med. 1994 Nov;1(1):7–18. [PMC free article] [PubMed] [Google Scholar]
  18. Klimpel K. R., Molloy S. S., Thomas G., Leppla S. H. Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10277–10281. doi: 10.1073/pnas.89.21.10277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Koehler T. M., Collier R. J. Anthrax toxin protective antigen: low-pH-induced hydrophobicity and channel formation in liposomes. Mol Microbiol. 1991 Jun;5(6):1501–1506. doi: 10.1111/j.1365-2958.1991.tb00796.x. [DOI] [PubMed] [Google Scholar]
  20. Labruyère E., Mock M., Ladant D., Michelson S., Gilles A. M., Laoide B., Bârzu O. Characterization of ATP and calmodulin-binding properties of a truncated form of Bacillus anthracis adenylate cyclase. Biochemistry. 1990 May 22;29(20):4922–4928. doi: 10.1021/bi00472a024. [DOI] [PubMed] [Google Scholar]
  21. Leppla S. H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci U S A. 1982 May;79(10):3162–3166. doi: 10.1073/pnas.79.10.3162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Little S. F., Leppla S. H., Burnett J. W., Friedlander A. M. Structure-function analysis of Bacillus anthracis edema factor by using monoclonal antibodies. Biochem Biophys Res Commun. 1994 Mar 15;199(2):676–682. doi: 10.1006/bbrc.1994.1281. [DOI] [PubMed] [Google Scholar]
  23. Milne J. C., Blanke S. R., Hanna P. C., Collier R. J. Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino- or carboxy-terminus. Mol Microbiol. 1995 Feb;15(4):661–666. doi: 10.1111/j.1365-2958.1995.tb02375.x. [DOI] [PubMed] [Google Scholar]
  24. Milne J. C., Collier R. J. pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Mol Microbiol. 1993 Nov;10(3):647–653. doi: 10.1111/j.1365-2958.1993.tb00936.x. [DOI] [PubMed] [Google Scholar]
  25. Milne J. C., Furlong D., Hanna P. C., Wall J. S., Collier R. J. Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem. 1994 Aug 12;269(32):20607–20612. [PubMed] [Google Scholar]
  26. Quinn C. P., Singh Y., Klimpel K. R., Leppla S. H. Functional mapping of anthrax toxin lethal factor by in-frame insertion mutagenesis. J Biol Chem. 1991 Oct 25;266(30):20124–20130. [PubMed] [Google Scholar]
  27. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  28. Wiedlocha A., Madshus I. H., Mach H., Middaugh C. R., Olsnes S. Tight folding of acidic fibroblast growth factor prevents its translocation to the cytosol with diphtheria toxin as vector. EMBO J. 1992 Dec;11(13):4835–4842. doi: 10.1002/j.1460-2075.1992.tb05589.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES