Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Nov;83(21):8231–8234. doi: 10.1073/pnas.83.21.8231

Feeding tadpoles cloned from Rana erythrocyte nuclei.

M A DiBerardino, N H Orr, R G McKinnell
PMCID: PMC386901  PMID: 3490665

Abstract

Diploid frog nuclei from differentiated somatic cells, transplanted into enucleated eggs to determine whether cell specialization generally involves irreversible genetic changes, have shown that nuclei from specialized somatic cells still contain the genes specifying the cell types and organ systems of swimming tadpoles. However, those tadpoles failed to feed and did not survive beyond the initial tadpole stages. Here we report that, after incubation in oocytes, triploid erythrocyte nuclei from juvenile frogs of Rana pipiens directed the formation of feeding tadpoles that survived up to a month and had differentiated hind limb buds. These tadpoles occurred at a high yield and showed the most extensive development so far obtained from documented differentiated somatic nuclei.

Full text

PDF
8231

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Briggs R. Genetics of cell type determination. Int Rev Cytol Suppl. 1979;(9):107–127. doi: 10.1016/s0074-7696(08)60900-6. [DOI] [PubMed] [Google Scholar]
  2. Briggs R., King T. J. Transplantation of Living Nuclei From Blastula Cells into Enucleated Frogs' Eggs. Proc Natl Acad Sci U S A. 1952 May;38(5):455–463. doi: 10.1073/pnas.38.5.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CLINE M. J., WALDMANN T. A. Effect of temperature on erythropoiesis and red cell survival in the frog. Am J Physiol. 1962 Sep;203:401–403. doi: 10.1152/ajplegacy.1962.203.3.401. [DOI] [PubMed] [Google Scholar]
  4. DASGUPTA S. Induction of triploidy by hydrostatic pressure in the leopard frog, Rana pipiens. J Exp Zool. 1962 Nov;151:105–121. doi: 10.1002/jez.1401510203. [DOI] [PubMed] [Google Scholar]
  5. Di Berardino M. A., Hoffner N. Development and chromosomal constitution of nuclear-transplants derived from male germ cells. J Exp Zool. 1971 Jan;176(1):61–72. doi: 10.1002/jez.1401760107. [DOI] [PubMed] [Google Scholar]
  6. DiBerardino M. A. Genetic stability and modulation of metazoan nuclei transplanted into eggs and oocytes. Differentiation. 1980;17(1):17–30. doi: 10.1111/j.1432-0436.1980.tb01078.x. [DOI] [PubMed] [Google Scholar]
  7. DiBerardino M. A., Hoffner N. J., Etkin L. D. Activation of dormant genes in specialized cells. Science. 1984 Jun 1;224(4652):946–952. doi: 10.1126/science.6719127. [DOI] [PubMed] [Google Scholar]
  8. DiBerardino M. A., Hoffner N. J. Gene reactivation in erythrocytes: nuclear transplantation in oocytes and eggs of Rana. Science. 1983 Feb 18;219(4586):862–864. doi: 10.1126/science.6600520. [DOI] [PubMed] [Google Scholar]
  9. DiBerardino M. A. Nuclear and chromosomal behavior in amphibian nuclear transplants. Int Rev Cytol Suppl. 1979;(9):129–160. doi: 10.1016/s0074-7696(08)60901-8. [DOI] [PubMed] [Google Scholar]
  10. Diberardino M. A., Hoffner N. J., Matilsky M. B. Methods for studying nucleocytoplasmic exchange of nonhistone proteins in embryos. Methods Cell Biol. 1977;16:141–165. doi: 10.1016/s0091-679x(08)60097-7. [DOI] [PubMed] [Google Scholar]
  11. Gurdon J. B., Brennan S., Fairman S., Mohun T. J. Transcription of muscle-specific actin genes in early Xenopus development: nuclear transplantation and cell dissociation. Cell. 1984 Oct;38(3):691–700. doi: 10.1016/0092-8674(84)90264-2. [DOI] [PubMed] [Google Scholar]
  12. Gurdon J. B., Laskey R. A., Reeves O. R. The developmental capacity of nuclei transplanted from keratinized skin cells of adult frogs. J Embryol Exp Morphol. 1975 Aug;34(1):93–112. [PubMed] [Google Scholar]
  13. Gurdon J. B., Laskey R. A. The transplantation of nuclei from single cultured cells into enucleate frogs' eggs. J Embryol Exp Morphol. 1970 Sep;24(2):227–248. [PubMed] [Google Scholar]
  14. Gurdon J. B., Uehlinger V. "Fertile" intestine nuclei. Nature. 1966 Jun 18;210(5042):1240–1241. doi: 10.1038/2101240a0. [DOI] [PubMed] [Google Scholar]
  15. Hennen S. Influence of spermine and reduced temperature on the ability of transplanted nuclei to promote normal development in eggs of Rana pipiens. Proc Natl Acad Sci U S A. 1970 Jul;66(3):630–637. doi: 10.1073/pnas.66.3.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoffner N. J., DiBerardino M. A. Developmental potential of somatic nuclei transplanted into meiotic oocytes of Rana pipiens. Science. 1980 Jul 25;209(4455):517–519. doi: 10.1126/science.6967227. [DOI] [PubMed] [Google Scholar]
  17. Hood L., Kronenberg M., Hunkapiller T. T cell antigen receptors and the immunoglobulin supergene family. Cell. 1985 Feb;40(2):225–229. doi: 10.1016/0092-8674(85)90133-3. [DOI] [PubMed] [Google Scholar]
  18. KING T. J., BRIGGS R. Serial transplantation of embryonic nuclei. Cold Spring Harb Symp Quant Biol. 1956;21:271–290. doi: 10.1101/sqb.1956.021.01.022. [DOI] [PubMed] [Google Scholar]
  19. Kao F. T. Identification of chick chromosomes in cell hybrids formed between chick erythrocytes and adenine-requiring mutants of Chinese hamster cells. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2893–2898. doi: 10.1073/pnas.70.10.2893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Klobutcher L. A., Jahn C. L., Prescott D. M. Internal sequences are eliminated from genes during macronuclear development in the ciliated protozoan Oxytricha nova. Cell. 1984 Apr;36(4):1045–1055. doi: 10.1016/0092-8674(84)90054-0. [DOI] [PubMed] [Google Scholar]
  21. MCKINNELL R. G. Intraspecific nuclear transplantation in frogs. J Hered. 1962 Sep-Oct;53:199–208. doi: 10.1093/oxfordjournals.jhered.a107171. [DOI] [PubMed] [Google Scholar]
  22. McAvoy J. W., Dixon K. E., Marshall J. A. Effects of differences in mitotic activity, stage of cell cycle, and degree of specialization of donor cells on nuclear transplantation in Xenopus laevis. Dev Biol. 1975 Aug;45(2):330–339. doi: 10.1016/0012-1606(75)90070-6. [DOI] [PubMed] [Google Scholar]
  23. Orr N. H., DiBerardino M. A., McKinnell R. G. The genome of frog erythrocytes displays centuplicate replications. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1369–1373. doi: 10.1073/pnas.83.5.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wabl M. R., Brun R. B., Du Pasquier L. Lymphocytes of the toad Xenopus laevis have the gene set for promoting tadpole development. Science. 1975 Dec 26;190(4221):1310–1312. doi: 10.1126/science.1198115. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES