Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Nov;83(21):8245–8248. doi: 10.1073/pnas.83.21.8245

Speciation by monobrachial centric fusions

Robert J Baker *, John W Bickham
PMCID: PMC386904  PMID: 16593777

Abstract

Fixation of centric fusions in natural populations often encounters minimal meiotic problems due to the ability of trivalents to segregate normally; therefore, little sterility barrier is achieved between a founder population and the parental stock. However, a strong sterility barrier can develop between different founder populations fixed for centric fusions that are monobrachially homologous in the resulting biarmed chromosomes (one arm is homologous but the other is nonhomologous). Hybridization through secondary contact then results in complex multivalents, which encounter problems in segregation and produce unbalanced gametes. Speciation mediated by centric fusions is a peripatric speciation model that does not postulate populational phenomena atypical of those characteristic of most mammals. The model appears applicable to a diversity of mammalian taxa such as bats of the Rhogeessa tumida-parvula complex, shrews of the Sorex araneus complex, and rodents of the Mus musculus and Rattus rattus complexes.

Keywords: chromosomes, reproductive isolation, cryptic species, population genetics

Full text

PDF
8245

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adolph S., Klein J. Genetic variation of wild mouse populations in southern Germany. I. Cytogenetic study. Genet Res. 1983 Apr;41(2):117–134. doi: 10.1017/s0016672300021169. [DOI] [PubMed] [Google Scholar]
  2. Arnason U The role of chromosomal rearrangement in mammalian speciation with special reference to Cetacea and Pinnipedia. Hereditas. 1972;70(1):113–118. [PubMed] [Google Scholar]
  3. Bengtsson B. O., Bodmer W. F. On the increase of chromosome mutations under random mating. Theor Popul Biol. 1976 Apr;9(2):260–281. doi: 10.1016/0040-5809(76)90048-4. [DOI] [PubMed] [Google Scholar]
  4. Capanna E., Gropp A., Winking H., Noack G., Civitelli M. V. Robertsonian metacentrics in the mouse. Chromosoma. 1976 Nov 29;58(4):341–353. doi: 10.1007/BF00292842. [DOI] [PubMed] [Google Scholar]
  5. Capanna E. Robertsonian numerical variation in animal speciation: Mus musculus, an emblematic model. Prog Clin Biol Res. 1982;96:155–177. [PubMed] [Google Scholar]
  6. Carson H. L., Clayton F. E., Stalker H. D. Karyotypic stability and speciation in Hawaiian Drosophila. Proc Natl Acad Sci U S A. 1967 May;57(5):1280–1285. doi: 10.1073/pnas.57.5.1280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Figueroa F., Zaleska-Rutczynska Z., Adolph S., Nadeau J. H., Klein J. Genetic variation of wild mouse populations in southern Germany. II. Serological study. Genet Res. 1983 Apr;41(2):135–144. doi: 10.1017/s0016672300021170. [DOI] [PubMed] [Google Scholar]
  8. Gropp A., Winking H., Zech L., Müller H. Robertsonian chromosomal variation and identification of metacentric chromosomes in feral mice. Chromosoma. 1972;39(3):265–288. doi: 10.1007/BF00290787. [DOI] [PubMed] [Google Scholar]
  9. Halkka L., Halkka O., Skarén U., Söderlund V. Chromosome banding pattern in a polymorphic population of Sorex araneus from northeastern Finland. Hereditas. 1974;76(2):305–314. doi: 10.1111/j.1601-5223.1974.tb01346.x. [DOI] [PubMed] [Google Scholar]
  10. Koop B. F., Baker R. J., Genoways H. H. Numerous chromosomal polymorphisms in a natural population of rice rats (Oryzomys, Cricetidae). Cytogenet Cell Genet. 1983;35(2):131–135. doi: 10.1159/000131854. [DOI] [PubMed] [Google Scholar]
  11. Lewis H. Speciation in flowering plants. Science. 1966 Apr 8;152(3719):167–172. doi: 10.1126/science.152.3719.167. [DOI] [PubMed] [Google Scholar]
  12. Matthey R. L'"eventail Robertsonien" chez les Mus (Leggada) africains du groupe minutoides-musculoides. Rev Suisse Zool. 1970 Sep;77(3):625–629. [PubMed] [Google Scholar]
  13. Nei M., Maruyama T., Wu C. I. Models of evolution of reproductive isolation. Genetics. 1983 Mar;103(3):557–579. doi: 10.1093/genetics/103.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. White B. J., Crandall C., Raveché E. S., Hjio J. H. Laboratory mice carrying three pairs of Robertsonian translocations: establishment of a strain and analysis of meiotic segregation. Cytogenet Cell Genet. 1978;21(3):113–138. doi: 10.1159/000130886. [DOI] [PubMed] [Google Scholar]
  15. White M. J. Models of speciation. New concepts suggest that the classical sympatric and allopatric models are not the only alternatives. Science. 1968 Mar 8;159(3819):1065–1070. doi: 10.1126/science.159.3819.1065. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES