Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Nov;83(21):8361–8365. doi: 10.1073/pnas.83.21.8361

Improved flow cytometric analysis of leukocyte subsets: simultaneous identification of five cell subsets using two-color immunofluorescence.

P K Horan, S E Slezak, G Poste
PMCID: PMC386928  PMID: 3534887

Abstract

Flow cytometric analysis of human peripheral blood leukocytes has typically been achieved by staining multiple aliquots of the same sample with fluorescent reagents specific for cell subsets of interest. Spectrally discrete fluorochrome tags have been developed for applications in which identification of multiple subsets (e.g., T and B cells) or of subsets not uniquely identified by a single reagent (e.g., activated T cells) requires use of multiple reagents per aliquot. Extension of this approach to more than two reagents per aliquot has led to multicolor methods requiring dual laser excitation and complex instrumentation. We describe an alternative two-color method using commercially available reagents that allows simultaneous identification of five discrete immune cell subsets using only a single excitation source. The technique uses dilution of commercial fluorochrome-labeled reagents with competing unlabeled reagents to selectively produce discrete fluorescence intensity profiles for cell subsets that would otherwise display overlapping or indistinguishable profiles when stained with reagents bearing the same fluorochrome. For example, the fluorescence intensity of phycoerythrin-labeled helper T (Th) cells can be adjusted to be distinct from that of phycoerythrin-labeled suppressor T (Ts) cells. Extending this technique to two colors, we have used a combination of seven different monoclonal antibodies to simultaneously quantify Th, Ts, B cells, natural killer cells, and monocytes in a single aliquot. An additional advantage of this approach is the ability to more accurately quantify "null" cells. Adjustment of fluorescence intensity profiles of different cell subsets by this method is applicable to flow cytometric analysis of a wide variety of cell types. The technique significantly extends the analytical capacity of flow cytometry without significantly increasing the complexity of the instrumentation required.

Full text

PDF
8361

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ault K. A. Clinical applications of fluorescence-activated cell sorting techniques. Diagn Immunol. 1983;1(1):2–10. [PubMed] [Google Scholar]
  2. Bekesi J. G., Tsang P., Lew F., Roboz J. P., Teirstein A., Selikoff I. J. Functional integrity of T, B, and natural killer cells in homosexual subjects with prodromata and in patients with AIDS. Ann N Y Acad Sci. 1984;437:28–38. doi: 10.1111/j.1749-6632.1984.tb37119.x. [DOI] [PubMed] [Google Scholar]
  3. De Paoli P., Reitano M., Battistin S., Castiglia C., Santini G. Enumeration of human lymphocyte subsets by monoclonal antibodies and flow cytometry: a comparative study using whole blood or mononuclear cells separated by density gradient centrifugation. J Immunol Methods. 1984 Sep 4;72(2):349–353. doi: 10.1016/0022-1759(84)90003-6. [DOI] [PubMed] [Google Scholar]
  4. Gratama J. W., Schuurman R. K., Van Leeuwen A., Jansen J., Oljans P., Tanke H. J., Van Rood J. J. Comparison of complement-dependent cytotoxicity and indirect immunofluorescence for enumeration of T-cell subpopulations in human peripheral blood. J Immunol Methods. 1983 Nov 11;64(1-2):99–108. doi: 10.1016/0022-1759(83)90388-5. [DOI] [PubMed] [Google Scholar]
  5. Hoffman R. A., Hansen W. P. Immunofluorescent analysis of blood cells by flow cytometry. Int J Immunopharmacol. 1981;3(3):249–254. doi: 10.1016/0192-0561(81)90018-7. [DOI] [PubMed] [Google Scholar]
  6. Horan P. K., Kappler J. W. Automated fluorescent analysis for cytotoxicity assays. J Immunol Methods. 1977;18(3-4):309–316. doi: 10.1016/0022-1759(77)90184-3. [DOI] [PubMed] [Google Scholar]
  7. Landay A., Gartland G. L., Abo T., Cooper M. D. Enumeration of human lymphocyte subpopulations by immunofluorescence: a comparative study using automated flow microfluorometry and fluorescence microscopy. J Immunol Methods. 1983 Mar 25;58(3):337–347. doi: 10.1016/0022-1759(83)90361-7. [DOI] [PubMed] [Google Scholar]
  8. Lanier L. L., Le A. M., Phillips J. H., Warner N. L., Babcock G. F. Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol. 1983 Oct;131(4):1789–1796. [PubMed] [Google Scholar]
  9. Lanier L. L., Loken M. R. Human lymphocyte subpopulations identified by using three-color immunofluorescence and flow cytometry analysis: correlation of Leu-2, Leu-3, Leu-7, Leu-8, and Leu-11 cell surface antigen expression. J Immunol. 1984 Jan;132(1):151–156. [PubMed] [Google Scholar]
  10. Loken M. R., Lanier L. L. Three-color immunofluorescence analysis of Leu antigens on human peripheral blood using two lasers on a fluorescence-activated cell sorter. Cytometry. 1984 Mar;5(2):151–158. doi: 10.1002/cyto.990050209. [DOI] [PubMed] [Google Scholar]
  11. Loken M. R., Parks D. R., Herzenberg L. A. Two-color immunofluorescence using a fluorescence-activated cell sorter. J Histochem Cytochem. 1977 Jul;25(7):899–907. doi: 10.1177/25.7.330738. [DOI] [PubMed] [Google Scholar]
  12. Lovett E. J., 3rd, Schnitzer B., Keren D. F., Flint A., Hudson J. L., McClatchey K. D. Application of flow cytometry to diagnostic pathology. Lab Invest. 1984 Feb;50(2):115–140. [PubMed] [Google Scholar]
  13. Mannoni P., Janowska-Wieczorek A., Turner A. R., McGann L., Turc J. M. Monoclonal antibodies against human granulocytes and myeloid differentiation antigens. Hum Immunol. 1982 Dec;5(4):309–323. doi: 10.1016/0198-8859(82)90022-2. [DOI] [PubMed] [Google Scholar]
  14. Oi V. T., Glazer A. N., Stryer L. Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J Cell Biol. 1982 Jun;93(3):981–986. doi: 10.1083/jcb.93.3.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reinherz E. L., Kung P. C., Goldstein G., Schlossman S. F. A monoclonal antibody with selective reactivity with functionally mature human thymocytes and all peripheral human T cells. J Immunol. 1979 Sep;123(3):1312–1317. [PubMed] [Google Scholar]
  16. Rose L. M., Ginsberg A. H., Rothstein T. L., Ledbetter J. A., Clark E. A. Selective loss of a subset of T helper cells in active multiple sclerosis. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7389–7393. doi: 10.1073/pnas.82.21.7389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Salzman G. C., Crowell J. M., Martin J. C., Trujillo T. T., Romero A., Mullaney P. F., LaBauve P. M. Cell classification by laser light scattering: identification and separation of unstained leukocytes. Acta Cytol. 1975 Jul-Aug;19(4):374–377. [PubMed] [Google Scholar]
  18. Titus J. A., Haugland R., Sharrow S. O., Segal D. M. Texas Red, a hydrophilic, red-emitting fluorophore for use with fluorescein in dual parameter flow microfluorometric and fluorescence microscopic studies. J Immunol Methods. 1982;50(2):193–204. doi: 10.1016/0022-1759(82)90225-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES