Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Dec;83(23):9055–9059. doi: 10.1073/pnas.83.23.9055

Monoclonal antibodies increase intracellular Ca2+ in sea urchin spermatozoa.

J S Trimmer, R W Schackmann, V D Vacquier
PMCID: PMC387073  PMID: 3466177

Abstract

Changes in intracellular free Ca2+ ([Ca2+]i) of sea urchin (Strongylocentrotus purpuratus) spermatozoa were measured using the fluorescent Ca2+ indicators fura-2 and indo-1. The intracellular pH (pHi) of sperm was also determined. The fucose sulfate-rich glycoconjugate component of egg jelly induced increases in [Ca2+]i and pHi in sperm and induced the acrosome reaction. Monoclonal antibodies (mAbs) to external domains of a 210-kDa glycoprotein of the sperm plasma membrane induced a 23-fold increase in [Ca2+]i (vs. 9-fold for fucose sulfate-rich glycoconjugate), but the mAbs did not cause the pHi to increase and did not induce the acrosome reaction. When the mAb treatment which induced an increase in [Ca2+]i was combined with an NH4Cl treatment, which increased the pHi, the acrosome reaction was induced. mAb-induced increases in [Ca2+]i were dependent on millimolar concentrations of extracellular Ca2+ and were reversed by placing sperm in Ca2+-free seawater or by chelating Ca2+ with EGTA. The mAb-induced [Ca2+]i increase was sensitive to the pH of the seawater, although mAb binding was not. The data show that increased [Ca2+]i and pHi are necessary for induction of the acrosome reaction and suggest that the 210-kDa protein may play a role in regulating Ca2+ entry into the spermatozoan. These mAbs make it possible to separate the increase in [Ca2+]i from the increase in pHi and may be useful in the elucidation of the regulatory role of Ca2+ in sperm physiology.

Full text

PDF
9055

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arslan P., Di Virgilio F., Beltrame M., Tsien R. Y., Pozzan T. Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J Biol Chem. 1985 Mar 10;260(5):2719–2727. [PubMed] [Google Scholar]
  2. Cantino M. E., Schackmann R. W., Johnson D. E. Changes in subcellular elemental distributions accompanying the acrosome reaction in sea urchin sperm. J Exp Zool. 1983 May;226(2):255–268. doi: 10.1002/jez.1402260211. [DOI] [PubMed] [Google Scholar]
  3. Chang T. W., Kung P. C., Gingras S. P., Goldstein G. Does OKT3 monoclonal antibody react with an antigen-recognition structure on human T cells? Proc Natl Acad Sci U S A. 1981 Mar;78(3):1805–1808. doi: 10.1073/pnas.78.3.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christen R., Schackmann R. W., Dahlquist F. W., Shapiro B. M. 31P-NMR analysis of sea urchin sperm activation. Reversible formation of high energy phosphate compounds by changes in intracellular pH. Exp Cell Res. 1983 Nov;149(1):289–294. doi: 10.1016/0014-4827(83)90400-7. [DOI] [PubMed] [Google Scholar]
  5. Christen R., Schackmann R. W., Shapiro B. M. Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus purpuratus. J Biol Chem. 1982 Dec 25;257(24):14881–14890. [PubMed] [Google Scholar]
  6. Christen R., Schackmann R. W., Shapiro B. M. Metabolism of sea urchin sperm. Interrelationships between intracellular pH, ATPase activity, and mitochondrial respiration. J Biol Chem. 1983 May 10;258(9):5392–5399. [PubMed] [Google Scholar]
  7. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  8. Hesketh T. R., Moore J. P., Morris J. D., Taylor M. V., Rogers J., Smith G. A., Metcalfe J. C. A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature. 1985 Feb 7;313(6002):481–484. doi: 10.1038/313481a0. [DOI] [PubMed] [Google Scholar]
  9. Hesketh T. R., Smith G. A., Moore J. P., Taylor M. V., Metcalfe J. C. Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J Biol Chem. 1983 Apr 25;258(8):4876–4882. [PubMed] [Google Scholar]
  10. Johnson C. H., Clapper D. L., Winkler M. M., Lee H. C., Epel D. A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH. Dev Biol. 1983 Aug;98(2):493–501. doi: 10.1016/0012-1606(83)90378-0. [DOI] [PubMed] [Google Scholar]
  11. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  12. Lee H. C., Johnson C., Epel D. Changes in internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm. Dev Biol. 1983 Jan;95(1):31–45. doi: 10.1016/0012-1606(83)90004-0. [DOI] [PubMed] [Google Scholar]
  13. O'Flynn K., Linch D. C., Tatham P. E. The effect of mitogenic lectins and monoclonal antibodies on intracellular free calcium concentration in human T-lymphocytes. Biochem J. 1984 Apr 15;219(2):661–666. doi: 10.1042/bj2190661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Oettgen H. C., Terhorst C., Cantley L. C., Rosoff P. M. Stimulation of the T3-T cell receptor complex induces a membrane-potential-sensitive calcium influx. Cell. 1985 Mar;40(3):583–590. doi: 10.1016/0092-8674(85)90206-5. [DOI] [PubMed] [Google Scholar]
  15. Podell S. B., Moy G. W., Vacquier V. D. Isolation and characterization of a plasma membrane fraction from sea urchin sperm exhibiting species specific recognition of the egg surface. Biochim Biophys Acta. 1984 Nov 21;778(1):25–37. doi: 10.1016/0005-2736(84)90444-9. [DOI] [PubMed] [Google Scholar]
  16. Poenie M., Alderton J., Tsien R. Y., Steinhardt R. A. Changes of free calcium levels with stages of the cell division cycle. Nature. 1985 May 9;315(6015):147–149. doi: 10.1038/315147a0. [DOI] [PubMed] [Google Scholar]
  17. Porter D. C., Vacquier V. D. Phosphorylation of sperm histone H1 is induced by the egg jelly layer in the sea urchin Strongylocentrotus purpuratus. Dev Biol. 1986 Jul;116(1):203–212. doi: 10.1016/0012-1606(86)90057-6. [DOI] [PubMed] [Google Scholar]
  18. Reinherz E. L., Hussey R. E., Schlossman S. F. A monoclonal antibody blocking human T cell function. Eur J Immunol. 1980 Oct;10(10):758–762. doi: 10.1002/eji.1830101006. [DOI] [PubMed] [Google Scholar]
  19. Rosoff P. M., Cantley L. C. Stimulation of the T3-T cell receptor-associated Ca2+ influx enhances the activity of the Na+/H+ exchanger in a leukemic human T cell line. J Biol Chem. 1985 Nov 15;260(26):14053–14059. [PubMed] [Google Scholar]
  20. Schackmann R. W., Chock P. B. Alteration of intracellular [Ca2+] in sea urchin sperm by the egg peptide speract. Evidence that increased intracellular Ca2+ is coupled to Na+ entry and increased intracellular pH. J Biol Chem. 1986 Jul 5;261(19):8719–8728. [PubMed] [Google Scholar]
  21. Schackmann R. W., Christen R., Shapiro B. M. Measurement of plasma membrane and mitochondrial potentials in sea urchin sperm. Changes upon activation and induction of the acrosome reaction. J Biol Chem. 1984 Nov 25;259(22):13914–13922. [PubMed] [Google Scholar]
  22. Schackmann R. W., Christen R., Shapiro B. M. Membrane potential depolarization and increased intracellular pH accompany the acrosome reaction of sea urchin sperm. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6066–6070. doi: 10.1073/pnas.78.10.6066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schackmann R. W., Eddy E. M., Shapiro B. M. The acrosome reaction of Strongylocentrotus purpuratus sperm. Ion requirements and movements. Dev Biol. 1978 Aug;65(2):483–495. doi: 10.1016/0012-1606(78)90043-x. [DOI] [PubMed] [Google Scholar]
  24. Schackmann R. W., Shapiro B. M. A partial sequence of ionic changes associated with the acrosome reaction of Strongylocentrotus purpuratus. Dev Biol. 1981 Jan 15;81(1):145–154. doi: 10.1016/0012-1606(81)90357-2. [DOI] [PubMed] [Google Scholar]
  25. Schackmann R. Ion measurements in sea urchin sperm. Methods Cell Biol. 1986;27:57–71. doi: 10.1016/s0091-679x(08)60342-8. [DOI] [PubMed] [Google Scholar]
  26. SeGall G. K., Lennarz W. J. Chemical characterization of the component of the jelly coat from sea urchin eggs responsible for induction of the acrosome reaction. Dev Biol. 1979 Jul;71(1):33–48. doi: 10.1016/0012-1606(79)90080-0. [DOI] [PubMed] [Google Scholar]
  27. Tilney L. G., Kiehart D. P., Sardet C., Tilney M. Polymerization of actin. IV. Role of Ca++ and H+ in the assembly of actin and in membrane fusion in the acrosomal reaction of echinoderm sperm. J Cell Biol. 1978 May;77(2):536–550. doi: 10.1083/jcb.77.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Trimmer J. S., Trowbridge I. S., Vacquier V. D. Monoclonal antibody to a membrane glycoprotein inhibits the acrosome reaction and associated Ca2+ and H+ fluxes of sea urchin sperm. Cell. 1985 Mar;40(3):697–703. doi: 10.1016/0092-8674(85)90218-1. [DOI] [PubMed] [Google Scholar]
  29. Trimmer J. S., Vacquier V. D. Activation of sea urchin gametes. Annu Rev Cell Biol. 1986;2:1–26. doi: 10.1146/annurev.cb.02.110186.000245. [DOI] [PubMed] [Google Scholar]
  30. Trowbridge I. S. Interspecies spleen-myeloma hybrid producing monoclonal antibodies against mouse lymphocyte surface glycoprotein, T200. J Exp Med. 1978 Jul 1;148(1):313–323. doi: 10.1084/jem.148.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vacquier V. D. Rapid immunoassays for the acrosome reaction of sea urchin sperm utilizing antibody to bindin. Exp Cell Res. 1984 Aug;153(2):281–286. doi: 10.1016/0014-4827(84)90600-1. [DOI] [PubMed] [Google Scholar]
  32. Weiss A., Imboden J., Shoback D., Stobo J. Role of T3 surface molecules in human T-cell activation: T3-dependent activation results in an increase in cytoplasmic free calcium. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4169–4173. doi: 10.1073/pnas.81.13.4169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weiss A., Wiskocil R. L., Stobo J. D. The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. J Immunol. 1984 Jul;133(1):123–128. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES