Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Dec;83(23):9202–9206. doi: 10.1073/pnas.83.23.9202

Pathological regulation of arachidonic acid release in cystic fibrosis: the putative basic defect.

J Carlstedt-Duke, M Brönnegård, B Strandvik
PMCID: PMC387103  PMID: 3097647

Abstract

The regulation of arachidonic acid release from membrane phospholipids was investigated in lymphocytes from patients with cystic fibrosis as well as control patients. No effect of either dexamethasone or fetal calf serum was seen on arachidonic acid release from cystic fibrosis lymphocytes, in contrast to control lymphocytes. In the latter cells, arachidonic acid release was inhibited by dexamethasone, fetal calf serum, or both. There were no differences in glucocorticoid receptor in lymphocytes from the two groups with regard to Kd and number of binding sites per cell. Furthermore, dexamethasone inhibited the incorporation of thymidine into lymphocytes from either group, indicating a normal functional glucocorticoid receptor. The defective regulation of arachidonic acid, resulting in an increased turnover, can explain many of the findings in cystic fibrosis, and we hypothesize that it is the basic defect causing the disease. The defect occurs at a level after the glucocorticoid receptor, which is functionally normal, and involves either the glucocorticoid-dependent phospholipase-inhibitory protein lipomodulin (lipocortin) or phospholipase A2.

Full text

PDF
9202

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Bazzaz F., Yadava V. P., Westenfelder C. Modification of Na and Cl transport in canine tracheal mucosa by prostaglandins. Am J Physiol. 1981 Feb;240(2):F101–F105. doi: 10.1152/ajprenal.1981.240.2.F101. [DOI] [PubMed] [Google Scholar]
  2. Anderson C. M. Hypothesis revisited: cystic fibrosis: a disturbance of water and electrolyte movement in exocrine secretory tissue associated with altered prostaglandin (PGE2) metabolism? J Pediatr Gastroenterol Nutr. 1984;3(1):15–22. [PubMed] [Google Scholar]
  3. Berg U., Kallner A., Kusoffsky E., Strandvik B. Fatty acid supplementation in cystic fibrosis. Monogr Paediatr. 1979;10:1–4. [PubMed] [Google Scholar]
  4. Blackwell G. J., Carnuccio R., Di Rosa M., Flower R. J., Parente L., Persico P. Macrocortin: a polypeptide causing the anti-phospholipase effect of glucocorticoids. Nature. 1980 Sep 11;287(5778):147–149. doi: 10.1038/287147a0. [DOI] [PubMed] [Google Scholar]
  5. Blackwell G. J., Flower R. J. Inhibition of phospholipase. Br Med Bull. 1983 Jul;39(3):260–264. doi: 10.1093/oxfordjournals.bmb.a071830. [DOI] [PubMed] [Google Scholar]
  6. Chase H. P., Cotton E. K., Elliott R. B. Intravenous linoleic acid supplementation in children with cystic fibrosis. Pediatrics. 1979 Aug;64(2):207–213. [PubMed] [Google Scholar]
  7. Chase H. P., Dupont J. Abnormal levels of prostaglandins and fatty acids in blood of children with cystic fibrosis. Lancet. 1978 Jul 29;2(8083):236–238. doi: 10.1016/s0140-6736(78)91746-4. [DOI] [PubMed] [Google Scholar]
  8. Cloix J. F., Colard O., Rothhut B., Russo-Marie F. Characterization and partial purification of 'renocortins': two polypeptides formed in renal cells causing the anti-phospholipase-like action of glucocorticoids. Br J Pharmacol. 1983 May;79(1):313–321. doi: 10.1111/j.1476-5381.1983.tb10526.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cystic fibrosis. A WHO/ICF(M)A meeting. Bull World Health Organ. 1985;63(1):1–10. [PMC free article] [PubMed] [Google Scholar]
  10. Danks D. M., Allan J., Phelan P. D., Chapman C. Mutations at more than one locus may be involved in cystic fibrosis--evidence based on first-cousin data and direct counting of cases. Am J Hum Genet. 1983 Sep;35(5):838–844. [PMC free article] [PubMed] [Google Scholar] [Retracted]
  11. Danks D. M., Phelan P. D., Chapman C. Retraction: No evidence for more than one locus in cystic fibrosis . Am J Hum Genet. 1984 Nov;36(6):1401–1402. [PMC free article] [PubMed] [Google Scholar]
  12. Dean M., Park M., Le Beau M. M., Robins T. S., Diaz M. O., Rowley J. D., Blair D. G., Vande Woude G. F. The human met oncogene is related to the tyrosine kinase oncogenes. 1985 Nov 28-Dec 4Nature. 318(6044):385–388. doi: 10.1038/318385a0. [DOI] [PubMed] [Google Scholar]
  13. Field M., Musch M. W., Miller R. L., Goetzl E. J. Regulation of epithelial electrolyte transport by metabolites of arachidonic acid. J Allergy Clin Immunol. 1984 Sep;74(3 Pt 2):382–385. doi: 10.1016/0091-6749(84)90135-0. [DOI] [PubMed] [Google Scholar]
  14. Harper T. B., Chase H. P., Henson J., Henson P. M. Essential fatty acid deficiency in the rabbit as a model of nutritional impairment in cystic fibrosis. In vitro and in vivo effects on lung defense mechanisms. Am Rev Respir Dis. 1982 Sep;126(3):540–547. doi: 10.1164/arrd.1982.126.3.540. [DOI] [PubMed] [Google Scholar]
  15. Hirata F. Lipomodulin: a possible mediator of the action of glucocorticoids. Adv Prostaglandin Thromboxane Leukot Res. 1983;11:73–78. [PubMed] [Google Scholar]
  16. Hirata F., Matsuda K., Notsu Y., Hattori T., del Carmine R. Phosphorylation at a tyrosine residue of lipomodulin in mitogen-stimulated murine thymocytes. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4717–4721. doi: 10.1073/pnas.81.15.4717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hirata F., Schiffmann E., Venkatasubramanian K., Salomon D., Axelrod J. A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc Natl Acad Sci U S A. 1980 May;77(5):2533–2536. doi: 10.1073/pnas.77.5.2533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hirata F. The regulation of lipomodulin, a phospholipase inhibitory protein, in rabbit neutrophils by phosphorylation. J Biol Chem. 1981 Aug 10;256(15):7730–7733. [PubMed] [Google Scholar]
  19. Hirata F., del Carmine R., Nelson C. A., Axelrod J., Schiffmann E., Warabi A., De Blas A. L., Nirenberg M., Manganiello V., Vaughan M. Presence of autoantibody for phospholipase inhibitory protein, lipomodulin, in patients with rheumatic diseases. Proc Natl Acad Sci U S A. 1981 May;78(5):3190–3194. doi: 10.1073/pnas.78.5.3190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hong S. L., Levine L. Inhibition of arachidonic acid release from cells as the biochemical action of anti-inflammatory corticosteroids. Proc Natl Acad Sci U S A. 1976 May;73(5):1730–1734. doi: 10.1073/pnas.73.5.1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Khalid B. A., Gyorki S., Warne G. L., Funder J. W. Cystic fibrosis and normal fibroblasts have identical glucocorticoid receptor profiles and induced protein responses. Clin Endocrinol (Oxf) 1983 Apr;18(4):407–415. doi: 10.1111/j.1365-2265.1983.tb00586.x. [DOI] [PubMed] [Google Scholar]
  22. Knowlton R. G., Cohen-Haguenauer O., Van Cong N., Frézal J., Brown V. A., Barker D., Braman J. C., Schumm J. W., Tsui L. C., Buchwald M. A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. 1985 Nov 28-Dec 4Nature. 318(6044):380–382. doi: 10.1038/318380a0. [DOI] [PubMed] [Google Scholar]
  23. Kojima I., Kojima K., Rasmussen H. Possible role of phospholipase A2 action and arachidonic acid metabolism in angiotensin II-mediated aldosterone secretion. Endocrinology. 1985 Sep;117(3):1057–1066. doi: 10.1210/endo-117-3-1057. [DOI] [PubMed] [Google Scholar]
  24. Leikauf G. D., Ueki I. F., Nadel J. A., Widdicombe J. H. Bradykinin stimulates Cl secretion and prostaglandin E2 release by canine tracheal epithelium. Am J Physiol. 1985 Jan;248(1 Pt 2):F48–F55. doi: 10.1152/ajprenal.1985.248.1.F48. [DOI] [PubMed] [Google Scholar]
  25. Leikauf G. D., Ueki I. F., Widdicombe J. H., Nadel J. A. Alteration of chloride secretion across canine tracheal epithelium by lipoxygenase products of arachidonic acid. Am J Physiol. 1986 Jan;250(1 Pt 2):F47–F53. doi: 10.1152/ajprenal.1986.250.1.F47. [DOI] [PubMed] [Google Scholar]
  26. Marom Z., Shelhamer J. H., Kaliner M. Effects of arachidonic acid, monohydroxyeicosatetraenoic acid and prostaglandins on the release of mucous glycoproteins from human airways in vitro. J Clin Invest. 1981 Jun;67(6):1695–1702. doi: 10.1172/JCI110207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marom Z., Shelhamer J. H., Sun F., Kaliner M. Human airway monohydroxyeicosatetraenoic acid generation and mucus release. J Clin Invest. 1983 Jul;72(1):122–127. doi: 10.1172/JCI110949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rivers J. P., Hassam A. G. Defective essential-fatty-acid metabolism in cystic fibrosis. Lancet. 1975 Oct 4;2(7936):642–643. doi: 10.1016/s0140-6736(75)90121-x. [DOI] [PubMed] [Google Scholar]
  29. Rogiers V., Dab I., Michotte Y., Vercruysse A., Crokaert R., Vis H. L. Abnormal fatty acid turnover in the phospholipids of the red blood cell membranes of cystic fibrosis patients (in vitro study). Pediatr Res. 1984 Aug;18(8):704–709. doi: 10.1203/00006450-198408000-00005. [DOI] [PubMed] [Google Scholar]
  30. Rogiers V., Mandelbaum I., Mozes N., Vertongen F., Dab I., Crokaert R., Vis H. L. In vitro study of the incorporation and transport of nonesterified fatty acids into the phospholipids of the red blood cell membranes of cystic fibrosis patients. Pediatr Res. 1982 Sep;16(9):761–768. doi: 10.1203/00006450-198209000-00011. [DOI] [PubMed] [Google Scholar]
  31. Rogiers V., Vercruysse A., Dab I., Baran D. Abnormal fatty acid pattern of the plasma cholesterol ester fraction in cystic fibrosis patients with and without pancreatic insufficiency. Eur J Pediatr. 1983 Oct;141(1):39–42. doi: 10.1007/BF00445666. [DOI] [PubMed] [Google Scholar]
  32. Romeo G., Bianco M., Devoto M., Menozzi P., Mastella G., Giunta A. M., Micalizzi C., Antonelli M., Battistini A., Santamaria F. Incidence in Italy, genetic heterogeneity, and segregation analysis of cystic fibrosis. Am J Hum Genet. 1985 Mar;37(2):338–349. [PMC free article] [PubMed] [Google Scholar]
  33. Rosenlund M. L., Selekman J. A., Kim H. K., Kritchevsky D. Dietary essential fatty acids in cystic fibrosis. Pediatrics. 1977 Mar;59(3):428–432. [PubMed] [Google Scholar]
  34. Rosner W., Polimeni T. An exchange assay for the cytoplasmic glucocorticoid receptor in the liver of the rat. Steroids. 1978 Mar;31(3):427–438. doi: 10.1016/0039-128x(78)90054-5. [DOI] [PubMed] [Google Scholar]
  35. Scambler P. J., Wainwright B. J., Farrall M., Bell J., Stanier P., Lench N. J., Bell G., Kruyer H., Ramirez F., Williamson R. Linkage of COL1A2 collagen gene to cystic fibrosis, and its clinical implications. Lancet. 1985 Nov 30;2(8466):1241–1242. doi: 10.1016/s0140-6736(85)90765-2. [DOI] [PubMed] [Google Scholar]
  36. Silverman B. L., Lloyd-Still J. D., Hazinski T. A., Hunt C. E. Increased sweat chloride levels associated with prostaglandin E1 infusion. J Pediatr. 1985 Jun;106(6):953–954. doi: 10.1016/s0022-3476(85)80250-x. [DOI] [PubMed] [Google Scholar]
  37. Smith K. A., Crabtree G. R., Kennedy S. J., Munck A. U. Glucocorticoid receptors and glucocorticoid sensitivity of mitogen stimulated and unstimulated human lymphocytes. Nature. 1977 Jun 9;267(5611):523–526. doi: 10.1038/267523a0. [DOI] [PubMed] [Google Scholar]
  38. Smith P. L., Welsh M. J., Stoff J. S., Frizzell R. A. Chloride secretion by canine tracheal epithelium: I. Role of intracellular c AMP levels. J Membr Biol. 1982;70(3):217–226. doi: 10.1007/BF01870564. [DOI] [PubMed] [Google Scholar]
  39. Toyoshima S., Hirata F., Axelrod J., Beppu M., Osawa T., Waxdal M. J. The relationship between phospholipid methylation and calcium influx in murine lymphocytes stimulated with native and modified Con A. Mol Immunol. 1982 Feb;19(2):229–234. doi: 10.1016/0161-5890(82)90335-2. [DOI] [PubMed] [Google Scholar]
  40. Tsui L. C., Buchwald M., Barker D., Braman J. C., Knowlton R., Schumm J. W., Eiberg H., Mohr J., Kennedy D., Plavsic N. Cystic fibrosis locus defined by a genetically linked polymorphic DNA marker. Science. 1985 Nov 29;230(4729):1054–1057. doi: 10.1126/science.2997931. [DOI] [PubMed] [Google Scholar]
  41. Wainwright B. J., Scambler P. J., Schmidtke J., Watson E. A., Law H. Y., Farrall M., Cooke H. J., Eiberg H., Williamson R. Localization of cystic fibrosis locus to human chromosome 7cen-q22. 1985 Nov 28-Dec 4Nature. 318(6044):384–385. doi: 10.1038/318384a0. [DOI] [PubMed] [Google Scholar]
  42. Wallner B. P., Mattaliano R. J., Hession C., Cate R. L., Tizard R., Sinclair L. K., Foeller C., Chow E. P., Browing J. L., Ramachandran K. L. Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature. 1986 Mar 6;320(6057):77–81. doi: 10.1038/320077a0. [DOI] [PubMed] [Google Scholar]
  43. White R., Woodward S., Leppert M., O'Connell P., Hoff M., Herbst J., Lalouel J. M., Dean M., Vande Woude G. A closely linked genetic marker for cystic fibrosis. 1985 Nov 28-Dec 4Nature. 318(6044):382–384. doi: 10.1038/318382a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES