Abstract
The "cage" convulsant t-butylbicyclophosphoro[35S]thionate ([35S]TBPS) binds with high affinity to sites at or near a gamma-aminobutyric acid (GABA)-gated chloride channel according to current hypothesis. We now report that the potencies of a series of anions in enhancing [35S]TBPS binding correlated highly with their relative permeabilities through GABA-gated chloride channels. Furthermore, statistically significant correlations are obtained between the apparent affinity (Kd) of [35S]TBPS estimated in the presence of these anions and their relative permeabilities through GABA-gated chloride channels. The latter relationships obtained whether the Kd of [35S]TBPS as estimated in rat cerebral cortex was correlated with the relative permeabilities of these anions in either frog dorsal root ganglion cells or primary cultures of mouse spinal cord neurons. These findings strongly suggest that [35S]TBPS binds to GABA-gated chloride channels and that the apparent affinity of this radioligand is directly related to the permeability of these channels. Thus, radioreceptor techniques using [35S]TBPS may provide a simple means of describing permeability characteristics of GABA-gated chloride channels.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akaike N., Hattori K., Oomura Y., Carpenter D. O. Bicuculline and picrotoxin block gamma-aminobutyric acid-gated Cl- conductance by different mechanisms. Experientia. 1985 Jan 15;41(1):70–71. doi: 10.1007/BF02005880. [DOI] [PubMed] [Google Scholar]
- Edwards C. The selectivity of ion channels in nerve and muscle. Neuroscience. 1982 Jun;7(6):1335–1366. doi: 10.1016/0306-4522(82)90249-4. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Bormann J., Sakmann B. Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA. 1983 Oct 27-Nov 2Nature. 305(5937):805–808. doi: 10.1038/305805a0. [DOI] [PubMed] [Google Scholar]
- Havoundjian H., Cohen R. M., Paul S. M., Skolnick P. Differential sensitivity of "central" and "peripheral" type benzodiazepine receptors to phospholipase A2. J Neurochem. 1986 Mar;46(3):804–811. doi: 10.1111/j.1471-4159.1986.tb13043.x. [DOI] [PubMed] [Google Scholar]
- Inomata N., Oomura Y., Akaike N., Edwards C. The anion selectivity of the gamma-aminobutyric acid controlled chloride channel in the perfused spinal ganglion cell of frog. Neurosci Res. 1986 Jul;3(5):371–383. doi: 10.1016/0168-0102(86)90029-5. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Nicoll R. A., Wojtowicz J. M. The effects of pentobarbital and related compounds on frog motoneurons. Brain Res. 1980 Jun 2;191(1):225–237. doi: 10.1016/0006-8993(80)90325-x. [DOI] [PubMed] [Google Scholar]
- Schulz D. W., Macdonald R. L. Barbiturate enhancement of GABA-mediated inhibition and activation of chloride ion conductance: correlation with anticonvulsant and anesthetic actions. Brain Res. 1981 Mar 23;209(1):177–188. doi: 10.1016/0006-8993(81)91179-3. [DOI] [PubMed] [Google Scholar]
- Shank R. P., Pong S. F., Freeman A. R., Graham L. T., Jr Bicuculline and picrotoxin as antagonists of gamma-aminobutyrate and neuromuscular inhibition in the lobster. Brain Res. 1974 May 31;72(1):71–78. doi: 10.1016/0006-8993(74)90651-9. [DOI] [PubMed] [Google Scholar]
- Skolnick P., Paul S. M. Benzodiazepine receptors in the central nervous system. Int Rev Neurobiol. 1982;23:103–140. [PubMed] [Google Scholar]
- Squires R. F., Casida J. E., Richardson M., Saederup E. [35S]t-butylbicyclophosphorothionate binds with high affinity to brain-specific sites coupled to gamma-aminobutyric acid-A and ion recognition sites. Mol Pharmacol. 1983 Mar;23(2):326–336. [PubMed] [Google Scholar]
- Study R. E., Barker J. L. Cellular mechanisms of benzodiazepine action. JAMA. 1982 Apr 16;247(15):2147–2151. [PubMed] [Google Scholar]
- Study R. E., Barker J. L. Diazepam and (--)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurons. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7180–7184. doi: 10.1073/pnas.78.11.7180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Supavilai P., Karobath M. Differential modulation of [35S]TBPS binding by the occupancy of benzodiazepine receptors with its ligands. Eur J Pharmacol. 1983 Jul 15;91(1):145–146. doi: 10.1016/0014-2999(83)90378-3. [DOI] [PubMed] [Google Scholar]
- Supavilai P., Karobath M. [35S]-t-butylbicyclophosphorothionate binding sites are constituents of the gamma-aminobutyric acid benzodiazepine receptor complex. J Neurosci. 1984 May;4(5):1193–1200. doi: 10.1523/JNEUROSCI.04-05-01193.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tallman J. F., Paul S. M., Skolnick P., Gallager D. W. Receptors for the age of anxiety: pharmacology of the benzodiazepines. Science. 1980 Jan 18;207(4428):274–281. doi: 10.1126/science.6101294. [DOI] [PubMed] [Google Scholar]
- Ticku M. K., Ban M., Olsen R. W. Binding of [3H]alpha-dihydropicrotoxinin, a gamma-aminobutyric acid synaptic antagonist, to rat brain membranes. Mol Pharmacol. 1978 May;14(3):391–402. [PubMed] [Google Scholar]
