Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Dec;83(23):9269–9273. doi: 10.1073/pnas.83.23.9269

Modulation of gamma-aminobutyric acid-mediated inhibitory synaptic currents in dissociated cortical cell cultures.

S Vicini, H Alho, E Costa, J M Mienville, M R Santi, F M Vaccarino
PMCID: PMC387117  PMID: 3097650

Abstract

Inhibitory gamma-aminobutyric acid-mediated synaptic currents were studied in dissociated primary cultures of neonatal rat cortex with the whole-cell patch-clamp technique. Immunocytochemical staining of the cultures showed the presence of a large number of glutamic acid decarboxylase-containing neurons, and electrical stimulation of randomly selected neurons produced in many cases chloride-mediated and bicuculline-sensitive inhibitory synaptic currents in postsynaptic cells. The amplitude and decay time of the inhibitory synaptic currents were increased by flunitrazepam and decreased by the beta-carboline derivative methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate, two high-affinity ligands for the allosteric regulatory sites of gamma-aminobutyric acid receptors. The imidazobenzodiazepine Ro 15-1788, another high-affinity ligand of the gamma-aminobutyric acid receptor regulatory sites that has negligible intrinsic activity, blocked the action of flunitrazepam and beta-carboline. However, Ro 15-1788 also increased the decay rate of the inhibitory synaptic currents. This might suggest that an endogenous ligand for the benzodiazepine-beta-carboline binding site is operative in gamma-aminobutyric acid-mediated synaptic transmission.

Full text

PDF
9269

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chan C. Y., Farb D. H. Modulation of neurotransmitter action: control of the gamma-aminobutyric acid response through the benzodiazepine receptor. J Neurosci. 1985 Sep;5(9):2365–2373. doi: 10.1523/JNEUROSCI.05-09-02365.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Collingridge G. L., Gage P. W., Robertson B. Inhibitory post-synaptic currents in rat hippocampal CA1 neurones. J Physiol. 1984 Nov;356:551–564. doi: 10.1113/jphysiol.1984.sp015482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cull-Candy S. G. Inhibitory synaptic currents in voltage-clamped locust muscle fibres desensitized to their excitatory transmitter. Proc R Soc Lond B Biol Sci. 1984 May 22;221(1224):375–383. doi: 10.1098/rspb.1984.0039. [DOI] [PubMed] [Google Scholar]
  4. Cull-Candy S. G. Miniature and evoked inhibitory junctional currents and gamma-aminobutyric acid-activated current noise in locust muscle fibres. J Physiol. 1986 May;374:179–200. doi: 10.1113/jphysiol.1986.sp016074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dichter M. A. Physiological identification of GABA as the inhibitory transmitter for mammalian cortical neurons in cell culture. Brain Res. 1980 May 19;190(1):111–121. doi: 10.1016/0006-8993(80)91163-4. [DOI] [PubMed] [Google Scholar]
  6. Dichter M. A. Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology, and synapse formation. Brain Res. 1978 Jun 30;149(2):279–293. doi: 10.1016/0006-8993(78)90476-6. [DOI] [PubMed] [Google Scholar]
  7. Dudel J. Voltage dependence of amplitude and time course of inhibitory synaptic current in crayfish muscle. Pflugers Arch. 1977 Oct 19;371(1-2):167–174. doi: 10.1007/BF00580786. [DOI] [PubMed] [Google Scholar]
  8. Fenwick E. M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol. 1982 Oct;331:577–597. doi: 10.1113/jphysiol.1982.sp014393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  10. Hunkeler W., Möhler H., Pieri L., Polc P., Bonetti E. P., Cumin R., Schaffner R., Haefely W. Selective antagonists of benzodiazepines. Nature. 1981 Apr 9;290(5806):514–516. doi: 10.1038/290514a0. [DOI] [PubMed] [Google Scholar]
  11. Jensen M. S., Lambert J. D. The interaction of the beta-carboline derivative DMCM with inhibitory amino acid responses on cultured mouse neurones. Neurosci Lett. 1983 Sep 30;40(2):175–179. doi: 10.1016/0304-3940(83)90298-7. [DOI] [PubMed] [Google Scholar]
  12. Johnston D., Brown T. H. Interpretation of voltage-clamp measurements in hippocampal neurons. J Neurophysiol. 1983 Aug;50(2):464–486. doi: 10.1152/jn.1983.50.2.464. [DOI] [PubMed] [Google Scholar]
  13. King G. L., Knox J. J., Dingledine R. Reduction of inhibition by a benzodiazepine antagonist, Ro15-1788, in the rat hippocampal slice. Neuroscience. 1985 Jun;15(2):371–378. doi: 10.1016/0306-4522(85)90219-2. [DOI] [PubMed] [Google Scholar]
  14. Krespan B., Springfield S. A., Haas H., Geller H. M. Electrophysiological studies on benzodiazepine antagonists. Brain Res. 1984 Mar 19;295(2):265–274. doi: 10.1016/0006-8993(84)90975-2. [DOI] [PubMed] [Google Scholar]
  15. Levi G., Aloisi F., Ciotti M. T., Gallo V. Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cell cultures. Brain Res. 1984 Jan 2;290(1):77–86. doi: 10.1016/0006-8993(84)90737-6. [DOI] [PubMed] [Google Scholar]
  16. Neale E. A., Oertel W. H., Bowers L. M., Weise V. K. Glutamate decarboxylase immunoreactivity and gamma-[3H] aminobutyric acid accumulation within the same neurons in dissociated cell cultures of cerebral cortex. J Neurosci. 1983 Feb;3(2):376–382. doi: 10.1523/JNEUROSCI.03-02-00376.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Onodera K., Takeuchi A. An analysis of the inhibitory post-synaptic current in the voltage-clamped crayfish muscle. J Physiol. 1979 Jan;286:265–282. doi: 10.1113/jphysiol.1979.sp012618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Segal M., Barker J. L. Rat hippocampal neurons in culture: voltage-clamp analysis of inhibitory synaptic connections. J Neurophysiol. 1984 Sep;52(3):469–487. doi: 10.1152/jn.1984.52.3.469. [DOI] [PubMed] [Google Scholar]
  19. Skerritt J. H., Macdonald R. L. Benzodiazepine Ro 15-1788: electrophysiological evidence for partial agonist activity. Neurosci Lett. 1983 Dec 30;43(2-3):321–326. doi: 10.1016/0304-3940(83)90208-2. [DOI] [PubMed] [Google Scholar]
  20. Snodgrass S. R., White W. F., Biales B., Dichter M. Biochemical correlates of GABA function in rat cortical neurons in culture. Brain Res. 1980 May 19;190(1):123–138. doi: 10.1016/0006-8993(80)91164-6. [DOI] [PubMed] [Google Scholar]
  21. Study R. E., Barker J. L. Diazepam and (--)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurons. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7180–7184. doi: 10.1073/pnas.78.11.7180. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES