Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Dec;83(24):9383–9387. doi: 10.1073/pnas.83.24.9383

Distance between two active-site lysines of ribulose bisphosphate carboxylase from Rhodospirillum rubrum

Eva H Lee 1, Claude D Stringer 1, Fred C Hartman 1,*
PMCID: PMC387142  PMID: 16593786

Abstract

In the absence of a three-dimensional structure of ribulose-bisphosphate carboxylase/oxygenase [3-phospho-D-glycerate carboxy-lyase(dimerizing), EC 4.1.1.39], we have probed the distance between two active-site lysyl residues (Lys-166 and Lys-329) of the Rhodospirillum rubrum enzyme with 4,4′-diisothiocyano-2,2′-disulfonate stilbene, a covalent cross-linking reagent that spans 12 Å. The reagent rapidly inactivated the carboxylase, and a competitive inhibitor provided substantial protection. To remove products arising from intersubunit or intermolecular cross-linking, the inactivated enzyme was subjected to gel filtration in the presence of urea. Inspection of a tryptic digest of the isolated monomeric fraction revealed that more than half of the incorporated reagent was associated with a single peptide. This peptide was purified by gel filtration, followed by high HPLC. Compositional and sequence analyses of the purified peptide established that it was composed of two chains, encompassing positions 149-168 and 314-337 of the original protein subunit and connected by a cross-link between Lys-166 and Lys-329. Thus, the two active-site lysines of the carboxylase can be juxtaposed within 12 Å, a finding that is consistent with their purported proximity to ribulose bisphosphate in the enzyme-substrate complex. The cross-link was not formed when the carboxylase was treated with the reagent either in the presence of a transition-state analogue (carboxyarabinitol bisphosphate) or in the absence of CO2 and Mg2+, conditions under which the enzyme exists in a deactivated form.

Keywords: active-site geometry; chemical cross-linking; 4,4′-diisothiocyano-2,2′-disulfonate stilbene

Full text

PDF
9383

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson I., Brändén C. I. Large single crystals of spinach 1,5-bisphosphate carboxylase/oxygenase suitable for X-ray studies. J Mol Biol. 1984 Jan 25;172(3):363–366. doi: 10.1016/s0022-2836(84)80033-9. [DOI] [PubMed] [Google Scholar]
  2. Barcena J. A., Pickersgill R. W., Adams M. J., Phillips D. C., Whatley F. R. Crystallisation and preliminary X-ray data of ribulose-1,5-bisphosphate carboxylase from spinach. EMBO J. 1983;2(12):2363–2367. doi: 10.1002/j.1460-2075.1983.tb01747.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  4. Cabantchik Z. I., Rothstein A. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J Membr Biol. 1972 Dec 29;10(3):311–330. doi: 10.1007/BF01867863. [DOI] [PubMed] [Google Scholar]
  5. Fraij B., Hartman F. C. Isolation and sequencing of an active-site peptide from Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase after affinity labeling with 2-[(bromoacetyl)amino]pentitol 1,5-bisphosphate. Biochemistry. 1983 Mar 15;22(6):1515–1520. doi: 10.1021/bi00275a028. [DOI] [PubMed] [Google Scholar]
  6. Grebanier A. E., Champagne D., Roy H. Effects of Mg2+ and substrates on the conformation of ribulose-1,5-bisphosphate carboxylase. Biochemistry. 1978 Nov 28;17(24):5150–5155. doi: 10.1021/bi00617a013. [DOI] [PubMed] [Google Scholar]
  7. Hartman F. C., Milanez S., Lee E. H. Ionization constants of two active-site lysyl epsilon-amino groups of ribulosebisphosphate carboxylase/oxygenase. J Biol Chem. 1985 Nov 15;260(26):13968–13975. [PubMed] [Google Scholar]
  8. Hartman F. C., Stringer C. D., Lee E. H. Complete primary structure of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. Arch Biochem Biophys. 1984 Jul;232(1):280–295. doi: 10.1016/0003-9861(84)90544-7. [DOI] [PubMed] [Google Scholar]
  9. Herndon C. S., Norton I. L., Hartman F. C. Reexamination of the binding site for pyridoxal 5'-phosphate in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. Biochemistry. 1982 Mar 16;21(6):1380–1385. doi: 10.1021/bi00535a043. [DOI] [PubMed] [Google Scholar]
  10. Janson C. A., Smith W. W., Eisenberg D., Hartman F. C. Preliminary structural studies of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. J Biol Chem. 1984 Sep 25;259(18):11594–11596. [PubMed] [Google Scholar]
  11. Johal S., Bourque D. P., Smith W. W., Suh S. W., Eisenberg D. Crystallization and characterization of ribulose 1,5-bisphosphate carboxylase/oxygenase from eight plant species. J Biol Chem. 1980 Sep 25;255(18):8873–8880. [PubMed] [Google Scholar]
  12. Jordan D. B., Chollet R. Inhibition of ribulose bisphosphate carboxylase by substrate ribulose 1,5-bisphosphate. J Biol Chem. 1983 Nov 25;258(22):13752–13758. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lorimer G. H., Miziorko H. M. Carbamate formation on the epsilon-amino group of a lysyl residue as the basis for the activation of ribulosebisphosphate carboxylase by CO2 and Mg2+. Biochemistry. 1980 Nov 11;19(23):5321–5328. doi: 10.1021/bi00564a027. [DOI] [PubMed] [Google Scholar]
  15. Lorimer G. H. Ribulosebisphosphate carboxylase: amino acid sequence of a peptide bearing the activator carbon dioxide. Biochemistry. 1981 Mar 3;20(5):1236–1240. doi: 10.1021/bi00508a028. [DOI] [PubMed] [Google Scholar]
  16. Lottspeich F. Identification of the phenylthiohydantoin derivatives of amino acids by high pressure liquid chromatography, using a ternary, isocratic solvent system. Hoppe Seylers Z Physiol Chem. 1980 Dec;361(12):1829–1834. doi: 10.1515/bchm2.1980.361.2.1829. [DOI] [PubMed] [Google Scholar]
  17. Mahoney W. C., Hermodson M. A. Separation of large denatured peptides by reverse phase high performance liquid chromatography. Trifluoroacetic acid as a peptide solvent. J Biol Chem. 1980 Dec 10;255(23):11199–11203. [PubMed] [Google Scholar]
  18. Meisenberger O., Pilz I., Bowien B., Pal G. P., Saenger W. Small angle x-ray study on the structure of active and inactive ribulose bisphosphate carboxylase from Alcaligenes eutrophus. Evidence for a configurational change. J Biol Chem. 1984 Apr 10;259(7):4463–4465. [PubMed] [Google Scholar]
  19. Miziorko H. M., Lorimer G. H. Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annu Rev Biochem. 1983;52:507–535. doi: 10.1146/annurev.bi.52.070183.002451. [DOI] [PubMed] [Google Scholar]
  20. Miziorko H. M., Sealy R. C. Characterization of the ribulosebisphosphate carboxylase-carbon dioxide-divalent cation-carboxypentitol bisphosphate complex. Biochemistry. 1980 Mar 18;19(6):1167–1171. doi: 10.1021/bi00547a020. [DOI] [PubMed] [Google Scholar]
  21. Norton I. L., Welch M. H., Hartman F. C. Evidence for essential lysyl residues in ribulosebisphosphate carboxylase by use of the affinity label 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate. J Biol Chem. 1975 Oct 25;250(20):8062–8068. [PubMed] [Google Scholar]
  22. Pierce J., Reddy G. S. The sites for catalysis and activation of ribulosebisphosphate carboxylase share a common domain. Arch Biochem Biophys. 1986 Mar;245(2):483–493. doi: 10.1016/0003-9861(86)90241-9. [DOI] [PubMed] [Google Scholar]
  23. Pierce J., Tolbert N. E., Barker R. Interaction of ribulosebisphosphate carboxylase/oxygenase with transition-state analogues. Biochemistry. 1980 Mar 4;19(5):934–942. doi: 10.1021/bi00546a018. [DOI] [PubMed] [Google Scholar]
  24. Robson B., Platt E. Refined models for computer calculations in protein engineering. Calibration and testing of atomic potential functions compatible with more efficient calculations. J Mol Biol. 1986 Mar 20;188(2):259–281. doi: 10.1016/0022-2836(86)90309-8. [DOI] [PubMed] [Google Scholar]
  25. Schloss J. V., Phares E. F., Long M. V., Norton I. L., Stringer C. D., Hartman F. C. Ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. Methods Enzymol. 1982;90(Pt E):522–528. doi: 10.1016/s0076-6879(82)90179-3. [DOI] [PubMed] [Google Scholar]
  26. Schloss J. V., Stringer C. D., Hartman F. C. Identification of essential lysyl and cysteinyl residues in spinach ribulosebisphosphate carboxylase/oxygenase modified by the affinity label N-bromoacetylethanolamine phosphate. J Biol Chem. 1978 Aug 25;253(16):5707–5711. [PubMed] [Google Scholar]
  27. Schneider G., Brändén C. I., Lorimer G. New crystal forms of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. J Mol Biol. 1986 Jan 5;187(1):141–143. doi: 10.1016/0022-2836(86)90415-8. [DOI] [PubMed] [Google Scholar]
  28. Siegel M. I., Lane M. D. Interaction of ribulose diphosphate carboxylase with 2-carboxyribitol diphosphate, an analogue of the proposed carboxylated intermediate in the CO 2 fixation reaction. Biochem Biophys Res Commun. 1972 Aug 7;48(3):508–516. doi: 10.1016/0006-291x(72)90377-4. [DOI] [PubMed] [Google Scholar]
  29. Stringer C. D., Hartman F. C. Sequences of two active-site peptides from spinach ribulosebisphosphate carboxylase/oxygenase. Biochem Biophys Res Commun. 1978 Feb 28;80(4):1043–1048. doi: 10.1016/0006-291x(78)91351-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES