Abstract
Microinjection of muscle 6-phosphofructokinase (PFK; EC 2.7.1.11) into tissue culture cells led to a reversible disintegration of microfilament bundles (stress fibers). The mode of disruption as well as of recovery of stress fibers was very similar to that found previously in experiments performed with the actin-severing protein brevin, an extracellular variant of gelsolin. PFK, like brevin, was also capable of disrupting stress fibers in detergent-extracted cells and in ethanol-fixed cells, in a Ca2+-dependent manner. When compared with heart muscle gelsolin, PFK comigrated with the 85- to 90-kDa band. Antibodies against PFK crossreacted with gelsolin from the same species. These results point to a tight association between polypeptides with similar biochemical and immunological parameters present in both preparations. They suggest hitherto unexpected cellular control mechanisms for both microfilament functions and glycolysis.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold H., Pette D. Binding of glycolytic enzymes to structure proteins of the muscle. Eur J Biochem. 1968 Nov;6(2):163–171. doi: 10.1111/j.1432-1033.1968.tb00434.x. [DOI] [PubMed] [Google Scholar]
- Bretscher A., Weber K. Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium-dependent manner. Cell. 1980 Jul;20(3):839–847. doi: 10.1016/0092-8674(80)90330-x. [DOI] [PubMed] [Google Scholar]
- Carron C. P., Hwo S. Y., Dingus J., Benson D. M., Meza I., Bryan J. A re-evaluation of cytoplasmic gelsolin localization. J Cell Biol. 1986 Jan;102(1):237–245. doi: 10.1083/jcb.102.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaponnier C., Borgia R., Rungger-Brändle E., Weil R., Gabbiani G. An actin-destabilizing factor is present in human plasma. Experientia. 1979 Aug 15;35(8):1039–1041. doi: 10.1007/BF01949928. [DOI] [PubMed] [Google Scholar]
- Chaponnier C., Patebex P., Gabbiani G. Human plasma actin-depolymerizing factor. Purification, biological activity and localization in leukocytes and platelets. Eur J Biochem. 1985 Jan 15;146(2):267–276. doi: 10.1111/j.1432-1033.1985.tb08649.x. [DOI] [PubMed] [Google Scholar]
- Clarke F. M., Masters C. J. On the association of glycolytic enzymes with structural proteins of skeletal muscle. Biochim Biophys Acta. 1975 Jan 13;381(1):37–46. doi: 10.1016/0304-4165(75)90187-7. [DOI] [PubMed] [Google Scholar]
- Clarke F. M., Morton D. J. Glycolytic enzyme binding in fetal brain--the role of actin. Biochem Biophys Res Commun. 1982 Nov 30;109(2):388–393. doi: 10.1016/0006-291x(82)91733-8. [DOI] [PubMed] [Google Scholar]
- Dölken G., Leisner E., Pette D. Immunofluorescent localization of glycogenolytic and glycolytic enzyme proteins and of malate dehydrogenase isozymes in cross-striated skeletal muscle and heart of the rabbit. Histochemistry. 1975;43(2):113–121. doi: 10.1007/BF00492440. [DOI] [PubMed] [Google Scholar]
- Füchtbauer A., Jockusch B. M., Maruta H., Kilimann M. W., Isenberg G. Disruption of microfilament organization after injection of F-actin capping proteins into living tissue culture cells. 1983 Jul 28-Aug 3Nature. 304(5924):361–364. doi: 10.1038/304361a0. [DOI] [PubMed] [Google Scholar]
- Hamprecht B., Kemper W., Amano T. Electrical response of glioma cells to acetylcholine. Brain Res. 1976 Jan 9;101(1):129–135. doi: 10.1016/0006-8993(76)90993-8. [DOI] [PubMed] [Google Scholar]
- Harris D. A., Schwartz J. H. Characterization of brevin, a serum protein that shortens actin filaments. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6798–6802. doi: 10.1073/pnas.78.11.6798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris H. E., Weeds A. G. Plasma actin depolymerizing factor has both calcium-dependent and calcium-independent effects on actin. Biochemistry. 1983 May 24;22(11):2728–2741. doi: 10.1021/bi00280a022. [DOI] [PubMed] [Google Scholar]
- Hawkes R., Niday E., Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982 Jan 1;119(1):142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
- Hesterberg L. K., Lee J. C. Self-association of rabbit muscle phosphofructokinase at pH 7.0: stoichiometry. Biochemistry. 1981 May 12;20(10):2974–2980. doi: 10.1021/bi00513a040. [DOI] [PubMed] [Google Scholar]
- Hinssen H., Small J. V., Sobieszek A. A Ca2+-dependent actin modulator from vertebrate smooth muscle. FEBS Lett. 1984 Jan 23;166(1):90–95. doi: 10.1016/0014-5793(84)80051-4. [DOI] [PubMed] [Google Scholar]
- Hofer H. W. Influence of enzyme concentration on the kinetic behaviour of rabbit muscle phosphofructokinase. Hoppe Seylers Z Physiol Chem. 1971 Jul;352(7):997–1004. doi: 10.1515/bchm2.1971.352.2.997. [DOI] [PubMed] [Google Scholar]
- Hofer H. W., Pette D. Verfahren einer standardisierten Extraktion und Reinigung der Phosphofructokinase aus Kaninchen-Skeletmuskel. Hoppe Seylers Z Physiol Chem. 1968 Aug;349(8):995–1012. [PubMed] [Google Scholar]
- Humphreys L., Reid S., Masters C. Studies on the topographical localization of the binding sites for substrate and for actin on the enzymes, glyceraldehydephosphate dehydrogenase and phosphofructokinase. Int J Biochem. 1986;18(5):445–451. doi: 10.1016/0020-711x(86)90187-4. [DOI] [PubMed] [Google Scholar]
- Kuo H. J., Malencik D. A., Liou R. S., Anderson S. R. Factors affecting the activation of rabbit muscle phosphofructokinase by actin. Biochemistry. 1986 Mar 25;25(6):1278–1286. doi: 10.1021/bi00354a013. [DOI] [PubMed] [Google Scholar]
- Kurth M. C., Wang L. L., Dingus J., Bryan J. Purification and characterization of a gelsolin-actin complex from human platelets. Evidence for Ca2+-insensitive functions. J Biol Chem. 1983 Sep 25;258(18):10895–10903. [PubMed] [Google Scholar]
- Liou R. S., Anderson S. Activation of rabbit muscle phosphofructokinase by F-actin and reconstituted thin filaments. Biochemistry. 1980 Jun 10;19(12):2684–2688. doi: 10.1021/bi00553a022. [DOI] [PubMed] [Google Scholar]
- Luther M. A., Gilbert H. F., Lee J. C. Self-association of rabbit muscle phosphofructokinase: role of subunit interaction in regulation of enzymatic activity. Biochemistry. 1983 Nov 22;22(24):5494–5500. doi: 10.1021/bi00293a007. [DOI] [PubMed] [Google Scholar]
- Luther M. A., Lee J. C. The role of phosphorylation in the interaction of rabbit muscle phosphofructokinase with F-actin. J Biol Chem. 1986 Feb 5;261(4):1753–1759. [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Rouayrenc J. F., Fattoum A., Gabrion J., Audemard E., Kassab R. Muscle gelsolin: isolation from heart tissue and characterization as an integral myofibrillar protein. FEBS Lett. 1984 Feb 13;167(1):52–58. doi: 10.1016/0014-5793(84)80831-5. [DOI] [PubMed] [Google Scholar]
- Thorstensson R., Utter G., Norberg R., Fagraeus A., Hartwig J. H., Yin H. L., Stossel T. P. Distribution of actin, myosin, actin-binding protein and gelsolin in cultured lymphoid cells. Exp Cell Res. 1982 Aug;140(2):395–400. doi: 10.1016/0014-4827(82)90129-x. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai M. Y., Kemp R. G. Isozymes of rabbit phosphofructokinase. Electrophoretic and immunochemical studies. J Biol Chem. 1973 Feb 10;248(3):785–792. [PubMed] [Google Scholar]
- Wang E., Yin H. L., Krueger J. G., Caliguiri L. A., Tamm I. Unphosphorylated gelsolin is localized in regions of cell-substratum contact or attachment in Rous sarcoma virus-transformed rat cells. J Cell Biol. 1984 Feb;98(2):761–771. doi: 10.1083/jcb.98.2.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang L. L., Bryan J. Isolation of calcium-dependent platelet proteins that interact with actin. Cell. 1981 Sep;25(3):637–649. doi: 10.1016/0092-8674(81)90171-9. [DOI] [PubMed] [Google Scholar]
- Yin H. L., Albrecht J. H., Fattoum A. Identification of gelsolin, a Ca2+-dependent regulatory protein of actin gel-sol transformation, and its intracellular distribution in a variety of cells and tissues. J Cell Biol. 1981 Dec;91(3 Pt 1):901–906. doi: 10.1083/jcb.91.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yin H. L., Hartwig J. H., Maruyama K., Stossel T. P. Ca2+ control of actin filament length. Effects of macrophage gelsolin on actin polymerization. J Biol Chem. 1981 Sep 25;256(18):9693–9697. [PubMed] [Google Scholar]
- Yin H. L., Stossel T. P. Purification and structural properties of gelsolin, a Ca2+-activated regulatory protein of macrophages. J Biol Chem. 1980 Oct 10;255(19):9490–9493. [PubMed] [Google Scholar]




