Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Dec;83(24):9764–9767. doi: 10.1073/pnas.83.24.9764

Increased in vitro phosphorylation of a Mr 60,000 protein in brain from patients with Alzheimer disease.

T Saitoh, K R Dobkins
PMCID: PMC387221  PMID: 3467336

Abstract

We have established in vitro conditions under which we can reliably measure kinase activity in normal postmortem human brain. Using these conditions, we detected in the brains of patients with Alzheimer disease a 2-fold increase in the level of Mr 60,000 protein phosphorylation compared to age-matched controls. The Mr 60,000 protein phosphorylation was found exclusively in the cytosol fraction. No differences were detected between phosphoproteins in 100,000 X g pellet fractions from brains of Alzheimer disease patients and from age-matched controls. Postmortem time up to 17 hr does not seem to affect the phosphorylation level of the Mr 60,000 protein. Younger Alzheimer disease patients had more prominent changes in the elevation of the Mr 60,000 protein phosphorylation level than older patients, although in the control patient, age did not affect the phosphorylation level of the Mr 60,000 protein. We conclude that in the brain cytosol of Alzheimer disease there may be an abnormality in either the degree of Mr 60,000 protein phosphorylation or in the Mr 60,000 protein concentration.

Full text

PDF
9764

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong D. M., LeRoy S., Shields D., Terry R. D. Somatostatin-like immunoreactivity within neuritic plaques. Brain Res. 1985 Jul 8;338(1):71–79. doi: 10.1016/0006-8993(85)90249-5. [DOI] [PubMed] [Google Scholar]
  2. Beal M. F., Mazurek M. F., Tran V. T., Chattha G., Bird E. D., Martin J. B. Reduced numbers of somatostatin receptors in the cerebral cortex in Alzheimer's disease. Science. 1985 Jul 19;229(4710):289–291. doi: 10.1126/science.2861661. [DOI] [PubMed] [Google Scholar]
  3. Blass J. P., Zemcov A. Alzheimer's disease. A metabolic systems degeneration? Neurochem Pathol. 1984 Summer;2(2):103–114. doi: 10.1007/BF02834249. [DOI] [PubMed] [Google Scholar]
  4. Bowen D. M., Smith C. B., White P., Davison A. N. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain. 1976 Sep;99(3):459–496. doi: 10.1093/brain/99.3.459. [DOI] [PubMed] [Google Scholar]
  5. Brautigan D. L., Bornstein P., Gallis B. Phosphotyrosyl-protein phosphatase. Specific inhibition by Zn. J Biol Chem. 1981 Jul 10;256(13):6519–6522. [PubMed] [Google Scholar]
  6. Cross A. J., Crow T. J., Ferrier I. N., Johnson J. A., Bloom S. R., Corsellis J. A. Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem. 1984 Dec;43(6):1574–1581. doi: 10.1111/j.1471-4159.1984.tb06081.x. [DOI] [PubMed] [Google Scholar]
  7. Davies P., Feisullin S. A search for discrete cholinergic nuclei in the human ventral forebrain. J Neurochem. 1982 Dec;39(6):1743–1747. doi: 10.1111/j.1471-4159.1982.tb08013.x. [DOI] [PubMed] [Google Scholar]
  8. Davies P., Maloney A. J. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet. 1976 Dec 25;2(8000):1403–1403. doi: 10.1016/s0140-6736(76)91936-x. [DOI] [PubMed] [Google Scholar]
  9. Dekowski S. A., Rybicki A., Drickamer K. A tyrosine kinase associated with the red cell membrane phosphorylates band 3. J Biol Chem. 1983 Mar 10;258(5):2750–2753. [PubMed] [Google Scholar]
  10. Greenamyre J. T., Penney J. B., Young A. B., D'Amato C. J., Hicks S. P., Shoulson I. Alterations in L-glutamate binding in Alzheimer's and Huntington's diseases. Science. 1985 Mar 22;227(4693):1496–1499. doi: 10.1126/science.2858129. [DOI] [PubMed] [Google Scholar]
  11. Grundke-Iqbal I., Iqbal K., Quinlan M., Tung Y. C., Zaidi M. S., Wisniewski H. M. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986 May 5;261(13):6084–6089. [PubMed] [Google Scholar]
  12. Grundke-Iqbal I., Iqbal K., Tung Y. C., Quinlan M., Wisniewski H. M., Binder L. I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4913–4917. doi: 10.1073/pnas.83.13.4913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ihara Y., Abraham C., Selkoe D. J. Antibodies to paired helical filaments in Alzheimer's disease do not recognize normal brain proteins. Nature. 1983 Aug 25;304(5928):727–730. doi: 10.1038/304727a0. [DOI] [PubMed] [Google Scholar]
  14. Kitt C. A., Price D. L., Struble R. G., Cork L. C., Wainer B. H., Becher M. W., Mobley W. C. Evidence for cholinergic neurites in senile plaques. Science. 1984 Dec 21;226(4681):1443–1445. doi: 10.1126/science.6505701. [DOI] [PubMed] [Google Scholar]
  15. Kosik K. S., Joachim C. L., Selkoe D. J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A. 1986 Jun;83(11):4044–4048. doi: 10.1073/pnas.83.11.4044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Labat-Robert J., Saitoh T., Godeau G., Robert L., Changeux J. P. Distribution of macromolecules from the intercellular matrix in the electroplaque of Electrophorus electricus. FEBS Lett. 1980 Nov 3;120(2):259–263. doi: 10.1016/0014-5793(80)80311-5. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Mann D. M., Yates P. O., Marcyniuk B. Alzheimer's presenile dementia, senile dementia of Alzheimer type and Down's syndrome in middle age form an age related continuum of pathological changes. Neuropathol Appl Neurobiol. 1984 May-Jun;10(3):185–207. doi: 10.1111/j.1365-2990.1984.tb00351.x. [DOI] [PubMed] [Google Scholar]
  20. Mann D. M., Yates P. O., Marcyniuk B. Some morphometric observations on the cerebral cortex and hippocampus in presenile Alzheimer's disease, senile dementia of Alzheimer type and Down's syndrome in middle age. J Neurol Sci. 1985 Jul;69(3):139–159. doi: 10.1016/0022-510x(85)90129-7. [DOI] [PubMed] [Google Scholar]
  21. Mash D. C., Flynn D. D., Potter L. T. Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer's disease and experimental cholinergic denervation. Science. 1985 May 31;228(4703):1115–1117. doi: 10.1126/science.3992249. [DOI] [PubMed] [Google Scholar]
  22. Morrison J. H., Rogers J., Scherr S., Benoit R., Bloom F. E. Somatostatin immunoreactivity in neuritic plaques of Alzheimer's patients. Nature. 1985 Mar 7;314(6006):90–92. doi: 10.1038/314090a0. [DOI] [PubMed] [Google Scholar]
  23. Nestler E. J., Greengard P. Dopamine and depolarizing agents regulate the state of phosphorylation of protein I in the mammalian superior cervical sympathetic ganglion. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7479–7483. doi: 10.1073/pnas.77.12.7479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Perry E. K., Perry R. H., Blessed G., Tomlinson B. E. Necropsy evidence of central cholinergic deficits in senile dementia. Lancet. 1977 Jan 22;1(8004):189–189. doi: 10.1016/s0140-6736(77)91780-9. [DOI] [PubMed] [Google Scholar]
  25. Roberts G. W., Crow T. J., Polak J. M. Location of neuronal tangles in somatostatin neurones in Alzheimer's disease. Nature. 1985 Mar 7;314(6006):92–94. doi: 10.1038/314092a0. [DOI] [PubMed] [Google Scholar]
  26. Saitoh T., Dobkins K. R. Protein kinase C in human brain and its inhibition by calmodulin. Brain Res. 1986 Jul 30;379(1):196–199. doi: 10.1016/0006-8993(86)90277-5. [DOI] [PubMed] [Google Scholar]
  27. Saitoh T., Schwartz J. H. Phosphorylation-dependent subcellular translocation of a Ca2+/calmodulin-dependent protein kinase produces an autonomous enzyme in Aplysia neurons. J Cell Biol. 1985 Mar;100(3):835–842. doi: 10.1083/jcb.100.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shimohama S., Taniguchi T., Fujiwara M., Kameyama M. Changes in nicotinic and muscarinic cholinergic receptors in Alzheimer-type dementia. J Neurochem. 1986 Jan;46(1):288–293. doi: 10.1111/j.1471-4159.1986.tb12960.x. [DOI] [PubMed] [Google Scholar]
  29. Sternberger N. H., Sternberger L. A., Ulrich J. Aberrant neurofilament phosphorylation in Alzheimer disease. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4274–4276. doi: 10.1073/pnas.82.12.4274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sul H. S., Cooper R. H., Whitehouse S., Walsh D. A. Cardiac phosphorylase kinase. Modulation of the activity by cAMP-dependent and cAMP-dependent phosphorylation of the alpha- subunit. J Biol Chem. 1982 Apr 10;257(7):3484–3490. [PubMed] [Google Scholar]
  31. Swarup G., Cohen S., Garbers D. L. Selective dephosphorylation of proteins containing phosphotyrosine by alkaline phosphatases. J Biol Chem. 1981 Aug 10;256(15):8197–8201. [PubMed] [Google Scholar]
  32. Terry R. D., Peck A., DeTeresa R., Schechter R., Horoupian D. S. Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol. 1981 Aug;10(2):184–192. doi: 10.1002/ana.410100209. [DOI] [PubMed] [Google Scholar]
  33. Wetmur J. G., Casals J., Elizan T. S. DNA binding protein profiles in Alzheimer's disease. J Neurol Sci. 1984 Nov-Dec;66(2-3):201–208. doi: 10.1016/0022-510x(84)90008-x. [DOI] [PubMed] [Google Scholar]
  34. Wood J. G., Mirra S. S., Pollock N. J., Binder L. I. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau) Proc Natl Acad Sci U S A. 1986 Jun;83(11):4040–4043. doi: 10.1073/pnas.83.11.4040. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES