Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Aug 6;93(16):8642–8647. doi: 10.1073/pnas.93.16.8642

Haemonchus contortus GA1 antigens: related, phospholipase C-sensitive, apical gut membrane proteins encoded as a polyprotein and released from the nematode during infection.

D P Jasmer 1, L E Perryman 1, T C McGuire 1
PMCID: PMC38726  PMID: 8710924

Abstract

It was previously shown that the Haemonchus contortus apical gut surface proteins p46, p52, and p100 induced protective immunity to challenge infections in goats. Here, it is shown that the three proteins are all encoded by a single gene (GA1) and initially expressed in adult parasites as a polyprotein (p100GA1). p46GA1 and p52GA1 are related proteins with 47% sequence identity, including a cysteine-containing region, which appears to confer secondary structure to these proteins, and a region with sequence similarity to bacterial Tolb proteins. GA1 protein expression is regulated during the life cycle at the level of transcript abundance. Only p52GA1 has characteristics of a glycosylinositolphospholipid membrane-anchored protein. However, both p46GA1 and p52GA1 were released from the gut membrane by phosphatidylinositol specific-phospholipase C, suggesting that p46GA1 membrane association depends on interactions with a glycosylinositolphospholipid gut membrane protein. Finally, GA1 proteins occur in abomasal mucus of infected lambs, demonstrating possible presentation to the host immune system during H. contortus infection. The results identify multiple characteristics of the GA1 proteins that should be considered for design of recombinant antigens for vaccine trials and that implicate a series of cellular processes leading to modification and expression of GA1 proteins at the nematode apical gut surface.

Full text

PDF
8642

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown D. A., Crise B., Rose J. K. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science. 1989 Sep 29;245(4925):1499–1501. doi: 10.1126/science.2571189. [DOI] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Espinoza B., Tarrab-Hazdai R., Silman I., Arnon R. Acetylcholinesterase in Schistosoma mansoni is anchored to the membrane via covalently attached phosphatidylinositol. Mol Biochem Parasitol. 1988 Jun;29(2-3):171–179. doi: 10.1016/0166-6851(88)90072-2. [DOI] [PubMed] [Google Scholar]
  4. Ferguson M. A., Williams A. F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
  5. Green N., Alexander H., Olson A., Alexander S., Shinnick T. M., Sutcliffe J. G., Lerner R. A. Immunogenic structure of the influenza virus hemagglutinin. Cell. 1982 Mar;28(3):477–487. doi: 10.1016/0092-8674(82)90202-1. [DOI] [PubMed] [Google Scholar]
  6. Holguin M. H., Wilcox L. A., Bernshaw N. J., Rosse W. F., Parker C. J. Erythrocyte membrane inhibitor of reactive lysis: effects of phosphatidylinositol-specific phospholipase C on the isolated and cell-associated protein. Blood. 1990 Jan 1;75(1):284–289. [PubMed] [Google Scholar]
  7. Jasmer D. P., McGuire T. C. Protective immunity to a blood-feeding nematode (Haemonchus contortus) induced by parasite gut antigens. Infect Immun. 1991 Dec;59(12):4412–4417. doi: 10.1128/iai.59.12.4412-4417.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jasmer D. P., Perryman L. E., Conder G. A., Crow S., McGuire T. Protective immunity to Haemonchus contortus induced by immunoaffinity isolated antigens that share a phylogenetically conserved carbohydrate gut surface epitope. J Immunol. 1993 Nov 15;151(10):5450–5460. [PubMed] [Google Scholar]
  9. Jasmer D. P., Reduker D. W., Hines S. A., Perryman L. E., McGuire T. C. Surface epitope localization and gene structure of a Babesia bovis 44-kilodalton variable merozoite surface antigen. Mol Biochem Parasitol. 1992 Oct;55(1-2):75–83. doi: 10.1016/0166-6851(92)90128-7. [DOI] [PubMed] [Google Scholar]
  10. Jasmer D. P. Trichinella spiralis infected skeletal muscle cells arrest in G2/M and cease muscle gene expression. J Cell Biol. 1993 May;121(4):785–793. doi: 10.1083/jcb.121.4.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jasmer D. P., Yao S., Vassilatis D., Despommier D., Neary S. M. Failure to detect Trichinella spiralis p43 in isolated host nuclei and in irradiated larvae of infected muscle cells which express the infected cell phenotype. Mol Biochem Parasitol. 1994 Oct;67(2):225–234. doi: 10.1016/0166-6851(94)00131-6. [DOI] [PubMed] [Google Scholar]
  12. Karanu F. N., Rurangirwa F. R., McGuire T. C., Jasmer D. P. Haemonchus contortus: identification of proteases with diverse characteristics in adult worm excretory-secretory products. Exp Parasitol. 1993 Nov;77(3):362–371. doi: 10.1006/expr.1993.1093. [DOI] [PubMed] [Google Scholar]
  13. Klein R. D., Olson E. R., Favreau M. A., Winterrowd C. A., Hatzenbuhler N. T., Shea M. H., Nulf S. C., Geary T. G. Cloning of a cDNA encoding phosphofructokinase from Haemonchus contortus. Mol Biochem Parasitol. 1991 Sep;48(1):17–26. doi: 10.1016/0166-6851(91)90160-8. [DOI] [PubMed] [Google Scholar]
  14. Krause M., Hirsh D. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell. 1987 Jun 19;49(6):753–761. doi: 10.1016/0092-8674(87)90613-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Levengood S. K., Webster R. E. Nucleotide sequences of the tolA and tolB genes and localization of their products, components of a multistep translocation system in Escherichia coli. J Bacteriol. 1989 Dec;171(12):6600–6609. doi: 10.1128/jb.171.12.6600-6609.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lin C., Chambers T. J., Rice C. M. Mutagenesis of conserved residues at the yellow fever virus 3/4A and 4B/5 dibasic cleavage sites: effects on cleavage efficiency and polyprotein processing. Virology. 1993 Feb;192(2):596–604. doi: 10.1006/viro.1993.1076. [DOI] [PubMed] [Google Scholar]
  17. Lincke C. R., Broeks A., The I., Plasterk R. H., Borst P. The expression of two P-glycoprotein (pgp) genes in transgenic Caenorhabditis elegans is confined to intestinal cells. EMBO J. 1993 Apr;12(4):1615–1620. doi: 10.1002/j.1460-2075.1993.tb05806.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lisanti M. P., Caras I. W., Davitz M. A., Rodriguez-Boulan E. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J Cell Biol. 1989 Nov;109(5):2145–2156. doi: 10.1083/jcb.109.5.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pearce E. J., Sher A. Three major surface antigens of Schistosoma mansoni are linked to the membrane by glycosylphosphatidylinositol. J Immunol. 1989 Feb 1;142(3):979–984. [PubMed] [Google Scholar]
  20. Reduker D. W., Jasmer D. P., Goff W. L., Perryman L. E., Davis W. C., McGuire T. C. A recombinant surface protein of Babesia bovis elicits bovine antibodies that react with live merozoites. Mol Biochem Parasitol. 1989 Jul;35(3):239–247. doi: 10.1016/0166-6851(89)90210-7. [DOI] [PubMed] [Google Scholar]
  21. Rhoads M. L., Fetterer R. H. Developmentally regulated secretion of cathepsin L-like cysteine proteases by Haemonchus contortus. J Parasitol. 1995 Aug;81(4):505–512. [PubMed] [Google Scholar]
  22. Sauma S. Y., Strand M. Identification and characterization of glycosylphosphatidylinositol-linked Schistosoma mansoni adult worm immunogens. Mol Biochem Parasitol. 1990 Jan 15;38(2):199–209. doi: 10.1016/0166-6851(90)90023-f. [DOI] [PubMed] [Google Scholar]
  23. Sharrock W. J. Cleavage of two yolk proteins from a precursor in Caenorhabditis elegans. J Mol Biol. 1984 Apr 15;174(3):419–431. doi: 10.1016/0022-2836(84)90329-2. [DOI] [PubMed] [Google Scholar]
  24. Smith T. S., Munn E. A., Graham M., Tavernor A. S., Greenwood C. A. Purification and evaluation of the integral membrane protein H11 as a protective antigen against Haemonchus contortus. Int J Parasitol. 1993 Apr;23(2):271–280. doi: 10.1016/0020-7519(93)90150-w. [DOI] [PubMed] [Google Scholar]
  25. Smith W. D. Protection in lambs immunised with Haemonchus contortus gut membrane proteins. Res Vet Sci. 1993 Jan;54(1):94–101. doi: 10.1016/0034-5288(93)90017-a. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES