Abstract
Reactive oxygen species play a central role in vascular inflammation and atherogenesis, with enhanced superoxide (O2.-) production contributing significantly to impairment of nitric oxide (.NO)-dependent relaxation of vessels from cholesterol-fed rabbits. We investigated potential sources of O2.- production, which contribute to this loss of endothelium-dependent vascular responses. The vasorelaxation elicited by acetylcholine (ACh) in phenylephrine-contracted, aortic ring segments was impaired by cholesterol feeding. Pretreatment of aortic vessels with either heparin, which competes with xanthine oxidase (XO) for binding to sulfated glycosaminoglycans, or the XO inhibitor allopurinol resulted in a partial restoration (36-40% at 1 muM ACh) of ACh-dependent relaxation. Furthermore, O2.(-)-dependent lucigenin chemiluminescence, measured in intact ring segments from hypercholesterolemic rabbits, was decreased by addition of heparin, allopurinol or a chimeric, heparin-binding superoxide dismutase. XO activity was elevated more than two-fold in plasma of hypercholesterolemic rabbits. Incubation of vascular rings from rabbits on a normal diet with purified XO (10 milliunits/ml) also impaired .NO-dependent relaxation but only in the presence of purine substrate. As with vessels from hypercholesterolemic rabbits, this effect was prevented by heparin and allopurinol treatment. We hypothesize that increases in plasma cholesterol induce the release of XO into the circulation, where it binds to endothelial cell glycosaminoglycans. Only in hypercholesterolemic vessels is sufficient substrate available to sustain the production of O2.- and impair NO-dependent vasorelaxation. Chronically, the continued production of peroxynitrite, (ONOO-) which the simultaneous generation of NO and O2.- implies, may irreversibly impair vessel function.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahamsson T., Brandt U., Marklund S. L., Sjöqvist P. O. Vascular bound recombinant extracellular superoxide dismutase type C protects against the detrimental effects of superoxide radicals on endothelium-dependent arterial relaxation. Circ Res. 1992 Feb;70(2):264–271. doi: 10.1161/01.res.70.2.264. [DOI] [PubMed] [Google Scholar]
- Adachi T., Fukushima T., Usami Y., Hirano K. Binding of human xanthine oxidase to sulphated glycosaminoglycans on the endothelial-cell surface. Biochem J. 1993 Jan 15;289(Pt 2):523–527. doi: 10.1042/bj2890523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alavi M. Z., Wasty F., Li Z., Galis Z. S., Ismail N., Moore S. Enhanced incorporation of [14C]glucosamine into glycosaminoglycans of aortic neointima of balloon-injured and cholesterol-fed rabbits in vitro. Atherosclerosis. 1992 Jul;95(1):59–67. doi: 10.1016/0021-9150(92)90176-h. [DOI] [PubMed] [Google Scholar]
- Arnal J. F., Michel J. B., Harrison D. G. Nitric oxide in the pathogenesis of hypertension. Curr Opin Nephrol Hypertens. 1995 Mar;4(2):182–188. doi: 10.1097/00041552-199503000-00012. [DOI] [PubMed] [Google Scholar]
- Beckmann J. S., Ye Y. Z., Anderson P. G., Chen J., Accavitti M. A., Tarpey M. M., White C. R. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler. 1994 Feb;375(2):81–88. doi: 10.1515/bchm3.1994.375.2.81. [DOI] [PubMed] [Google Scholar]
- Bossaller C., Habib G. B., Yamamoto H., Williams C., Wells S., Henry P. D. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5'-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest. 1987 Jan;79(1):170–174. doi: 10.1172/JCI112779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chappell S. P., Lewis M. J., Henderson A. H. Effect of lipid feeding on endothelium dependent relaxation in rabbit aortic preparations. Cardiovasc Res. 1987 Jan;21(1):34–38. doi: 10.1093/cvr/21.1.34. [DOI] [PubMed] [Google Scholar]
- Crawford D. W., Blankenhorn D. H. Arterial wall oxygenation, oxyradicals, and atherosclerosis. Atherosclerosis. 1991 Aug;89(2-3):97–108. doi: 10.1016/0021-9150(91)90049-9. [DOI] [PubMed] [Google Scholar]
- Darley-Usmar V. M., Hogg N., O'Leary V. J., Wilson M. T., Moncada S. The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Radic Res Commun. 1992;17(1):9–20. doi: 10.3109/10715769209061085. [DOI] [PubMed] [Google Scholar]
- Darley-Usmar V., Wiseman H., Halliwell B. Nitric oxide and oxygen radicals: a question of balance. FEBS Lett. 1995 Aug 7;369(2-3):131–135. doi: 10.1016/0014-5793(95)00764-z. [DOI] [PubMed] [Google Scholar]
- Fukushima T., Adachi T., Hirano K. The heparin-binding site of human xanthine oxidase. Biol Pharm Bull. 1995 Jan;18(1):156–158. doi: 10.1248/bpb.18.156. [DOI] [PubMed] [Google Scholar]
- Förstermann U., Mügge A., Alheid U., Haverich A., Frölich J. C. Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. Circ Res. 1988 Feb;62(2):185–190. doi: 10.1161/01.res.62.2.185. [DOI] [PubMed] [Google Scholar]
- Graham A., Hogg N., Kalyanaraman B., O'Leary V., Darley-Usmar V., Moncada S. Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Lett. 1993 Sep 13;330(2):181–185. doi: 10.1016/0014-5793(93)80269-z. [DOI] [PubMed] [Google Scholar]
- Jayakody L., Senaratne M., Thomson A., Kappagoda T. Endothelium-dependent relaxation in experimental atherosclerosis in the rabbit. Circ Res. 1987 Feb;60(2):251–264. doi: 10.1161/01.res.60.2.251. [DOI] [PubMed] [Google Scholar]
- Kjellén L., Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–475. doi: 10.1146/annurev.bi.60.070191.002303. [DOI] [PubMed] [Google Scholar]
- Lapenna D., Mezzetti A., de Gioia S., Ciofani G., Marzio L., Di Ilio C., Cuccurullo F. Heparin: does it act as an antioxidant in vivo? Biochem Pharmacol. 1992 Jul 7;44(1):188–191. doi: 10.1016/0006-2952(92)90057-p. [DOI] [PubMed] [Google Scholar]
- Linas S. L., Whittenburg D., Repine J. E. Role of xanthine oxidase in ischemia/reperfusion injury. Am J Physiol. 1990 Mar;258(3 Pt 2):F711–F716. doi: 10.1152/ajprenal.1990.258.3.F711. [DOI] [PubMed] [Google Scholar]
- Lindstedt K. A., Kokkonen J. O., Kovanen P. T. Soluble heparin proteoglycans released from stimulated mast cells induce uptake of low density lipoproteins by macrophages via scavenger receptor-mediated phagocytosis. J Lipid Res. 1992 Jan;33(1):65–75. [PubMed] [Google Scholar]
- Miyamoto Y., Akaike T., Yoshida M., Goto S., Horie H., Maeda H. Potentiation of nitric oxide-mediated vasorelaxation by xanthine oxidase inhibitors. Proc Soc Exp Biol Med. 1996 Apr;211(4):366–373. doi: 10.3181/00379727-211-43982. [DOI] [PubMed] [Google Scholar]
- Mohazzab K. M., Wolin M. S. Properties of a superoxide anion-generating microsomal NADH oxidoreductase, a potential pulmonary artery PO2 sensor. Am J Physiol. 1994 Dec;267(6 Pt 1):L823–L831. doi: 10.1152/ajplung.1994.267.6.L823. [DOI] [PubMed] [Google Scholar]
- Mügge A., Brandes R. P., Böger R. H., Dwenger A., Bode-Böger S., Kienke S., Frölich J. C., Lichtlen P. R. Vascular release of superoxide radicals is enhanced in hypercholesterolemic rabbits. J Cardiovasc Pharmacol. 1994 Dec;24(6):994–998. doi: 10.1097/00005344-199424060-00019. [DOI] [PubMed] [Google Scholar]
- Mügge A., Elwell J. H., Peterson T. E., Hofmeyer T. G., Heistad D. D., Harrison D. G. Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res. 1991 Nov;69(5):1293–1300. doi: 10.1161/01.res.69.5.1293. [DOI] [PubMed] [Google Scholar]
- Münzel T., Sayegh H., Freeman B. A., Tarpey M. M., Harrison D. G. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J Clin Invest. 1995 Jan;95(1):187–194. doi: 10.1172/JCI117637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakazono K., Watanabe N., Matsuno K., Sasaki J., Sato T., Inoue M. Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10045–10048. doi: 10.1073/pnas.88.22.10045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen V. G., McCammon A. T., Tan S., Kirk K. A., Samuelson P. N., Parks D. A. Xanthine oxidase inactivation attenuates postocclusion shock after descending thoracic aorta occlusion and reperfusion in rabbits. J Thorac Cardiovasc Surg. 1995 Sep;110(3):715–722. doi: 10.1016/S0022-5223(95)70103-6. [DOI] [PubMed] [Google Scholar]
- Ohara Y., Peterson T. E., Harrison D. G. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest. 1993 Jun;91(6):2546–2551. doi: 10.1172/JCI116491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oury T. D., Piantadosi C. A., Crapo J. D. Cold-induced brain edema in mice. Involvement of extracellular superoxide dismutase and nitric oxide. J Biol Chem. 1993 Jul 25;268(21):15394–15398. [PubMed] [Google Scholar]
- Pritchard K. A., Jr, Groszek L., Smalley D. M., Sessa W. C., Wu M., Villalon P., Wolin M. S., Stemerman M. B. Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ Res. 1995 Sep;77(3):510–518. doi: 10.1161/01.res.77.3.510. [DOI] [PubMed] [Google Scholar]
- Sames K., Lücht B. Changes of the glycosaminoglycan metabolism in human lung fibroblasts and porcine aortic endothelium cells influenced by the number of subcultures in vitro and by lipids in the medium. Z Gerontol. 1991 Mar-Apr;24(2):94–97. [PubMed] [Google Scholar]
- Shimokawa H., Kim P., Vanhoutte P. M. Endothelium-dependent relaxation to aggregating platelets in isolated basilar arteries of control and hypercholesterolemic pigs. Circ Res. 1988 Sep;63(3):604–612. doi: 10.1161/01.res.63.3.604. [DOI] [PubMed] [Google Scholar]
- Srinivasan S. R., Vijayagopal P., Eberle K., Radhakrishnamurthy B., Berenson G. S. Interaction of a high-affinity heparin subfraction with low-density lipoprotein stimulates cholesteryl ester accumulation in mouse macrophages. Biochim Biophys Acta. 1991 Jan 28;1081(2):188–196. doi: 10.1016/0005-2760(91)90025-d. [DOI] [PubMed] [Google Scholar]
- Steinberg D. Modified forms of low-density lipoprotein and atherosclerosis. J Intern Med. 1993 Mar;233(3):227–232. doi: 10.1111/j.1365-2796.1993.tb00980.x. [DOI] [PubMed] [Google Scholar]
- Sternbergh W. C., 3rd, Makhoul R. G., Adelman B. Heparin prevents postischemic endothelial cell dysfunction by a mechanism independent of its anticoagulant activity. J Vasc Surg. 1993 Feb;17(2):318–327. [PubMed] [Google Scholar]
- Strålin P., Marklund S. L. Effects of oxidative stress on expression of extracellular superoxide dismutase, CuZn-superoxide dismutase and Mn-superoxide dismutase in human dermal fibroblasts. Biochem J. 1994 Mar 1;298(Pt 2):347–352. doi: 10.1042/bj2980347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan S., Yokoyama Y., Dickens E., Cash T. G., Freeman B. A., Parks D. A. Xanthine oxidase activity in the circulation of rats following hemorrhagic shock. Free Radic Biol Med. 1993 Oct;15(4):407–414. doi: 10.1016/0891-5849(93)90040-2. [DOI] [PubMed] [Google Scholar]
- Tanaka H., Okada T., Konishi H., Tsuji T. The effect of reactive oxygen species on the biosynthesis of collagen and glycosaminoglycans in cultured human dermal fibroblasts. Arch Dermatol Res. 1993;285(6):352–355. doi: 10.1007/BF00371836. [DOI] [PubMed] [Google Scholar]
- White C. R., Brock T. A., Chang L. Y., Crapo J., Briscoe P., Ku D., Bradley W. A., Gianturco S. H., Gore J., Freeman B. A. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1044–1048. doi: 10.1073/pnas.91.3.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokokawa K., Tahara H., Kohno M., Mandal A. K., Yanagisawa M., Takeda T. Heparin regulates endothelin production through endothelium-derived nitric oxide in human endothelial cells. J Clin Invest. 1993 Oct;92(4):2080–2085. doi: 10.1172/JCI116805. [DOI] [PMC free article] [PubMed] [Google Scholar]