Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jul 23;93(15):7432–7435. doi: 10.1073/pnas.93.15.7432

Second-hand chloroplasts and the case of the disappearing nucleus.

J D Palmer 1, C F Delwiche 1
PMCID: PMC38760  PMID: 8755491

Full text

PDF
7432

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldauf S. L., Palmer J. D. Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11558–11562. doi: 10.1073/pnas.90.24.11558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhattacharya D., Helmchen T., Bibeau C., Melkonian M. Comparisons of nuclear-encoded small-subunit ribosomal RNAs reveal the evolutionary position of the Glaucocystophyta. Mol Biol Evol. 1995 May;12(3):415–420. doi: 10.1093/oxfordjournals.molbev.a040216. [DOI] [PubMed] [Google Scholar]
  3. Bhattacharya D., Helmchen T., Melkonian M. Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphina and the Chlorarachniophyta. J Eukaryot Microbiol. 1995 Jan-Feb;42(1):65–69. doi: 10.1111/j.1550-7408.1995.tb01541.x. [DOI] [PubMed] [Google Scholar]
  4. Cavalier-Smith T., Allsopp M. T., Chao E. E. Chimeric conundra: are nucleomorphs and chromists monophyletic or polyphyletic? Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11368–11372. doi: 10.1073/pnas.91.24.11368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Rijk P., Van de Peer Y., Van den Broeck I., De Wachter R. Evolution according to large ribosomal subunit RNA. J Mol Evol. 1995 Sep;41(3):366–375. doi: 10.1007/BF01215184. [DOI] [PubMed] [Google Scholar]
  6. Doolittle R. F., Feng D. F., Tsang S., Cho G., Little E. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science. 1996 Jan 26;271(5248):470–477. doi: 10.1126/science.271.5248.470. [DOI] [PubMed] [Google Scholar]
  7. Douglas S. E., Murphy C. A., Spencer D. F., Gray M. W. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature. 1991 Mar 14;350(6314):148–151. doi: 10.1038/350148a0. [DOI] [PubMed] [Google Scholar]
  8. Drouin G., Moniz de Sá M., Zuker M. The Giardia lamblia actin gene and the phylogeny of eukaryotes. J Mol Evol. 1995 Dec;41(6):841–849. doi: 10.1007/BF00173163. [DOI] [PubMed] [Google Scholar]
  9. Edlind T. D., Li J., Visvesvara G. S., Vodkin M. H., McLaughlin G. L., Katiyar S. K. Phylogenetic analysis of beta-tubulin sequences from amitochondrial protozoa. Mol Phylogenet Evol. 1996 Apr;5(2):359–367. doi: 10.1006/mpev.1996.0031. [DOI] [PubMed] [Google Scholar]
  10. Elgar G., Sandford R., Aparicio S., Macrae A., Venkatesh B., Brenner S. Small is beautiful: comparative genomics with the pufferfish (Fugu rubripes). Trends Genet. 1996 Apr;12(4):145–150. doi: 10.1016/0168-9525(96)10018-4. [DOI] [PubMed] [Google Scholar]
  11. Eschbach S., Hofmann C. J., Maier U. G., Sitte P., Hansmann P. A eukaryotic genome of 660 kb: electrophoretic karyotype of nucleomorph and cell nucleus of the cryptomonad alga, Pyrenomonas salina. Nucleic Acids Res. 1991 Apr 25;19(8):1779–1781. doi: 10.1093/nar/19.8.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fink G. R. Pseudogenes in yeast? Cell. 1987 Apr 10;49(1):5–6. doi: 10.1016/0092-8674(87)90746-x. [DOI] [PubMed] [Google Scholar]
  13. Fitch D. H., Bugaj-Gaweda B., Emmons S. W. 18S ribosomal RNA gene phylogeny for some Rhabditidae related to Caenorhabditis. Mol Biol Evol. 1995 Mar;12(2):346–358. doi: 10.1093/oxfordjournals.molbev.a040207. [DOI] [PubMed] [Google Scholar]
  14. Gilson P., McFadden G. I. The chlorarachniophyte: a cell with two different nuclei and two different telomeres. Chromosoma. 1995 May;103(9):635–641. doi: 10.1007/BF00357690. [DOI] [PubMed] [Google Scholar]
  15. Gockel G., Hachtel W., Baier S., Fliss C., Henke M. Genes for components of the chloroplast translational apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid flagellate Astasia longa. Curr Genet. 1994 Sep;26(3):256–262. doi: 10.1007/BF00309557. [DOI] [PubMed] [Google Scholar]
  16. Gray M. W. The endosymbiont hypothesis revisited. Int Rev Cytol. 1992;141:233–357. doi: 10.1016/s0074-7696(08)62068-9. [DOI] [PubMed] [Google Scholar]
  17. Grossman A. R., Bhaya D., Apt K. E., Kehoe D. M. Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu Rev Genet. 1995;29:231–288. doi: 10.1146/annurev.ge.29.120195.001311. [DOI] [PubMed] [Google Scholar]
  18. Horwitz D. A., Wang H., Gray J. D. Cytokine gene profile in circulating blood mononuclear cells from patients with systemic lupus erythematosus: increased interleukin-2 but not interleukin-4 mRNA. Lupus. 1994 Oct;3(5):423–428. doi: 10.1177/096120339400300511. [DOI] [PubMed] [Google Scholar]
  19. Kamaishi T., Hashimoto T., Nakamura Y., Nakamura F., Murata S., Okada N., Okamoto K., Shimizu M., Hasegawa M. Protein phylogeny of translation elongation factor EF-1 alpha suggests microsporidians are extremely ancient eukaryotes. J Mol Evol. 1996 Feb;42(2):257–263. doi: 10.1007/BF02198852. [DOI] [PubMed] [Google Scholar]
  20. Knoll A. H. The early evolution of eukaryotes: a geological perspective. Science. 1992 May 1;256(5057):622–627. doi: 10.1126/science.1585174. [DOI] [PubMed] [Google Scholar]
  21. Kuma K., Nikoh N., Iwabe N., Miyata T. Phylogenetic position of Dictyostelium inferred from multiple protein data sets. J Mol Evol. 1995 Aug;41(2):238–246. doi: 10.1007/BF00170678. [DOI] [PubMed] [Google Scholar]
  22. Kumar S., Rzhetsky A. Evolutionary relationships of eukaryotic kingdoms. J Mol Evol. 1996 Feb;42(2):183–193. doi: 10.1007/BF02198844. [DOI] [PubMed] [Google Scholar]
  23. McFadden G. I., Gilson P. R., Douglas S. E. The photosynthetic endosymbiont in cryptomonad cells produces both chloroplast and cytoplasmic-type ribosomes. J Cell Sci. 1994 Feb;107(Pt 2):649–657. doi: 10.1242/jcs.107.2.649. [DOI] [PubMed] [Google Scholar]
  24. McFadden G. I., Gilson P. R., Hofmann C. J., Adcock G. J., Maier U. G. Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3690–3694. doi: 10.1073/pnas.91.9.3690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McFadden G. I., Reith M. E., Munholland J., Lang-Unnasch N. Plastid in human parasites. Nature. 1996 Jun 6;381(6582):482–482. doi: 10.1038/381482a0. [DOI] [PubMed] [Google Scholar]
  26. Mooers A. O., Redfield R. J. Digging up the roots of life. Nature. 1996 Feb 15;379(6566):587–588. doi: 10.1038/379587a0. [DOI] [PubMed] [Google Scholar]
  27. Olsen G. J. Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Spring Harb Symp Quant Biol. 1987;52:825–837. doi: 10.1101/sqb.1987.052.01.090. [DOI] [PubMed] [Google Scholar]
  28. Palmer J. D., Logsdon J. M., Jr The recent origins of introns. Curr Opin Genet Dev. 1991 Dec;1(4):470–477. doi: 10.1016/s0959-437x(05)80194-7. [DOI] [PubMed] [Google Scholar]
  29. Pediani J. D., Wilson S. M. The effect of a phorbol ester upon the cholinergic regulation of potassium permeability in the rat submandibular gland. Experientia. 1995 Feb 15;51(2):110–112. doi: 10.1007/BF01929350. [DOI] [PubMed] [Google Scholar]
  30. Preiser P., Williamson D. H., Wilson R. J. tRNA genes transcribed from the plastid-like DNA of Plasmodium falciparum. Nucleic Acids Res. 1995 Nov 11;23(21):4329–4336. doi: 10.1093/nar/23.21.4329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Russell C. B., Fraga D., Hinrichsen R. D. Extremely short 20-33 nucleotide introns are the standard length in Paramecium tetraurelia. Nucleic Acids Res. 1994 Apr 11;22(7):1221–1225. doi: 10.1093/nar/22.7.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Spieth J., Brooke G., Kuersten S., Lea K., Blumenthal T. Operons in C. elegans: polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions. Cell. 1993 May 7;73(3):521–532. doi: 10.1016/0092-8674(93)90139-h. [DOI] [PubMed] [Google Scholar]
  33. Van de Peer Y., Van der Auwera G., De Wachter R. The evolution of stramenopiles and alveolates as derived by "substitution rate calibration" of small ribosomal subunit RNA. J Mol Evol. 1996 Feb;42(2):201–210. doi: 10.1007/BF02198846. [DOI] [PubMed] [Google Scholar]
  34. Wolfe K. H., Morden C. W., Palmer J. D. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10648–10652. doi: 10.1073/pnas.89.22.10648. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES