Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jul 23;93(15):7546–7551. doi: 10.1073/pnas.93.15.7546

Glycerol-induced development of catalytically active conformation of Crotalus adamanteus L-amino acid oxidase in vitro.

A A Raibekas 1, V Massey 1
PMCID: PMC38782  PMID: 8755511

Abstract

The reconstitutable apoprotein of Crotalus adamanteus L-amino acid oxidase was prepared using hydrophobic interaction chromatography. After reconstitution with flavin adenine dinucleotide, the resulting protein was inactive, with a perturbed conformation of the flavin binding site. Subsequently, a series of cosolvent-dependent compact intermediates was identified. The nearly complete activation of the reconstituted apoprotein and the restoration of its native flavin binding site was achieved in the presence of 50% glycerol. We provide evidence that in addition to a merely stabilizing effect of glycerol on native proteins, glycerol can also have a restorative effect on their compact equilibrium intermediates, and we suggest the hydrophobic effect as a dominating force in this in vitro-assisted restorative process.

Full text

PDF
7546

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa T., Kita Y. A., Narhi L. O. Protein-ligand interaction as a method to study surface properties of proteins. Methods Biochem Anal. 1991;35:87–125. doi: 10.1002/9780470110560.ch2. [DOI] [PubMed] [Google Scholar]
  2. Bai Y., Sosnick T. R., Mayne L., Englander S. W. Protein folding intermediates: native-state hydrogen exchange. Science. 1995 Jul 14;269(5221):192–197. doi: 10.1126/science.7618079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradbury S. L., Jakoby W. B. Glycerol as an enzyme-stabilizing agent: effects on aldehyde dehydrogenase. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2373–2376. doi: 10.1073/pnas.69.9.2373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coles C. J., Edmondson D. E., Singer T. P. Reversible inactivation of L-amino acid oxidase. Properties of the three conformational forms. J Biol Chem. 1977 Nov 25;252(22):8035–8039. [PubMed] [Google Scholar]
  5. Curti B., Massey V., Zmudka M. Inactivation of snake venom L-amino acid oxidase by freezing. J Biol Chem. 1968 May 10;243(9):2306–2314. [PubMed] [Google Scholar]
  6. Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  7. Edmondson D. E., Tollin G. Circular dichroism studies of the flavin chromophore and of the relation between redox properties and flavin environment in oxidases and dehydrogenases. Biochemistry. 1971 Jan 5;10(1):113–124. doi: 10.1021/bi00777a018. [DOI] [PubMed] [Google Scholar]
  8. Fink A. L., Calciano L. J., Goto Y., Kurotsu T., Palleros D. R. Classification of acid denaturation of proteins: intermediates and unfolded states. Biochemistry. 1994 Oct 18;33(41):12504–12511. doi: 10.1021/bi00207a018. [DOI] [PubMed] [Google Scholar]
  9. Fink A. L. Compact intermediate states in protein folding. Annu Rev Biophys Biomol Struct. 1995;24:495–522. doi: 10.1146/annurev.bb.24.060195.002431. [DOI] [PubMed] [Google Scholar]
  10. Fink A. L. Effects of cryoprotectants on enzyme structure. Cryobiology. 1986 Feb;23(1):28–37. doi: 10.1016/0011-2240(86)90015-5. [DOI] [PubMed] [Google Scholar]
  11. Fágáin C. O. Understanding and increasing protein stability. Biochim Biophys Acta. 1995 Sep 27;1252(1):1–14. doi: 10.1016/0167-4838(95)00133-f. [DOI] [PubMed] [Google Scholar]
  12. Gekko K., Morikawa T. Thermodynamics of polyol-induced thermal stabilization of chymotrypsinogen. J Biochem. 1981 Jul;90(1):51–60. doi: 10.1093/oxfordjournals.jbchem.a133469. [DOI] [PubMed] [Google Scholar]
  13. Gekko K., Timasheff S. N. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry. 1981 Aug 4;20(16):4667–4676. doi: 10.1021/bi00519a023. [DOI] [PubMed] [Google Scholar]
  14. Gekko K., Timasheff S. N. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry. 1981 Aug 4;20(16):4677–4686. doi: 10.1021/bi00519a024. [DOI] [PubMed] [Google Scholar]
  15. Ghisla S., Massey V. New flavins for old: artificial flavins as active site probes of flavoproteins. Biochem J. 1986 Oct 1;239(1):1–12. doi: 10.1042/bj2390001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gonnelli M., Strambini G. B. Glycerol effects on protein flexibility: a tryptophan phosphorescence study. Biophys J. 1993 Jul;65(1):131–137. doi: 10.1016/S0006-3495(93)81069-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goto Y., Calciano L. J., Fink A. L. Acid-induced folding of proteins. Proc Natl Acad Sci U S A. 1990 Jan;87(2):573–577. doi: 10.1073/pnas.87.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoch S. O. Tryptophan synthetase from Bacillus subtilis. Purification and characterization of the component. J Biol Chem. 1973 May 10;248(9):2999–3003. [PubMed] [Google Scholar]
  19. Jaenicke R. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry. 1991 Apr 2;30(13):3147–3161. doi: 10.1021/bi00227a001. [DOI] [PubMed] [Google Scholar]
  20. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  21. KEARNEY E. B., SINGER T. P. The L-amino acid oxidases of snake venom. III. Reversible inactivation of L-amino acid oxidases. Arch Biochem Biophys. 1951 Oct;33(3):377–396. doi: 10.1016/0003-9861(51)90125-7. [DOI] [PubMed] [Google Scholar]
  22. KEARNEY E. B., SINGER T. P. The L-amino acid oxidases of snake venom. IV. The effect of anions on the reversible inactivation. Arch Biochem Biophys. 1951 Oct;33(3):397–413. doi: 10.1016/0003-9861(51)90126-9. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lattman E. E., Rose G. D. Protein folding--what's the question? Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):439–441. doi: 10.1073/pnas.90.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lim W. A., Sauer R. T. Alternative packing arrangements in the hydrophobic core of lambda repressor. Nature. 1989 May 4;339(6219):31–36. doi: 10.1038/339031a0. [DOI] [PubMed] [Google Scholar]
  26. Moore E. G., Cardemil E., Massey V. Production of a covalent flavin linkage in lipoamide dehydrogenase. Reaction with 8-Cl-FAD. J Biol Chem. 1978 Sep 25;253(18):6413–6422. [PubMed] [Google Scholar]
  27. Murthy Y. V., Massey V. Chemical modification of the N-10 ribityl side chain of flavins. Effects on properties of flavoprotein disulfide oxidoreductases. J Biol Chem. 1995 Dec 1;270(48):28586–28594. doi: 10.1074/jbc.270.48.28586. [DOI] [PubMed] [Google Scholar]
  28. Ogle T. F. Action of glycerol and sodium molybdate in stabilization of the progesterone receptor from rat trophoblast. J Biol Chem. 1983 Apr 25;258(8):4982–4988. [PubMed] [Google Scholar]
  29. Pourplanche C., Lambert C., Berjot M., Marx J., Chopard C., Alix A. J., Larreta-Garde V. Conformational changes of lipoxygenase (LOX) in modified environments. Contribution to the variation in specificity of soybean LOX type 1. J Biol Chem. 1994 Dec 16;269(50):31585–31591. [PubMed] [Google Scholar]
  30. Priev A., Almagor A., Yedgar S., Gavish B. Glycerol decreases the volume and compressibility of protein interior. Biochemistry. 1996 Feb 20;35(7):2061–2066. doi: 10.1021/bi951842r. [DOI] [PubMed] [Google Scholar]
  31. Raibekas A. A., Jorns M. S. Affinity probing of flavin binding sites. 1. Covalent attachment of 8-(methylsulfonyl)FAD to pig heart lipoamide dehydrogenase. Biochemistry. 1994 Oct 25;33(42):12649–12655. doi: 10.1021/bi00208a016. [DOI] [PubMed] [Google Scholar]
  32. Raibekas A. A., Jorns M. S. Affinity probing of flavin binding sites. 2. Identification of a reactive cysteine in the flavin domain of Escherichia coli DNA photolyase. Biochemistry. 1994 Oct 25;33(42):12656–12664. doi: 10.1021/bi00208a017. [DOI] [PubMed] [Google Scholar]
  33. Rose G. D., Wolfenden R. Hydrogen bonding, hydrophobicity, packing, and protein folding. Annu Rev Biophys Biomol Struct. 1993;22:381–415. doi: 10.1146/annurev.bb.22.060193.002121. [DOI] [PubMed] [Google Scholar]
  34. Sanz J. M., Johnson C. M., Fersht A. R. The A-state of barnase. Biochemistry. 1994 Sep 20;33(37):11189–11199. doi: 10.1021/bi00203a015. [DOI] [PubMed] [Google Scholar]
  35. Sato S., Ward C. L., Krouse M. E., Wine J. J., Kopito R. R. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem. 1996 Jan 12;271(2):635–638. doi: 10.1074/jbc.271.2.635. [DOI] [PubMed] [Google Scholar]
  36. Tanford C. The hydrophobic effect and the organization of living matter. Science. 1978 Jun 2;200(4345):1012–1018. doi: 10.1126/science.653353. [DOI] [PubMed] [Google Scholar]
  37. Timasheff S. N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct. 1993;22:67–97. doi: 10.1146/annurev.bb.22.060193.000435. [DOI] [PubMed] [Google Scholar]
  38. Timasheff S. N. Water as ligand: preferential binding and exclusion of denaturants in protein unfolding. Biochemistry. 1992 Oct 20;31(41):9857–9864. doi: 10.1021/bi00156a001. [DOI] [PubMed] [Google Scholar]
  39. Van Berkel W. J., Van den Berg W. A., Müller F. Large-scale preparation and reconstitution of apo-flavoproteins with special reference to butyryl-CoA dehydrogenase from Megasphaera elsdenii. Hydrophobic-interaction chromatography. Eur J Biochem. 1988 Dec 1;178(1):197–207. doi: 10.1111/j.1432-1033.1988.tb14444.x. [DOI] [PubMed] [Google Scholar]
  40. Von Hippel P. H., Wong K. Y. On the conformational stability of globular proteins. The effects of various electrolytes and nonelectrolytes on the thermal ribonuclease transition. J Biol Chem. 1965 Oct;240(10):3909–3923. [PubMed] [Google Scholar]
  41. WELLNER D., MEISTER A. Crystalline L-amino acid oxidase of Crotalus adamanteus. J Biol Chem. 1960 Jul;235:2013–2018. [PubMed] [Google Scholar]
  42. WHITBY L. G. A new method for preparing flavin-adenine dinucleotide. Biochem J. 1953 Jun;54(3):437–442. doi: 10.1042/bj0540437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wellner D. Evidence for conformational changes in L-amino acid oxidase associated with reversible inactivation. Biochemistry. 1966 May;5(5):1585–1591. doi: 10.1021/bi00869a019. [DOI] [PubMed] [Google Scholar]
  44. deKok A., Rawitch A. B. Studies on L-amino acid oxidase. II. Dissociation and characterization of its subunits. Biochemistry. 1969 Apr;8(4):1405–1411. doi: 10.1021/bi00832a015. [DOI] [PubMed] [Google Scholar]
  45. van Berkel W. J., Benen J. A., Snoek M. C. On the FAD-induced dimerization of apo-lipoamide dehydrogenase from Azotobacter vinelandii and Pseudomonas fluorescens. Kinetics of reconstitution. Eur J Biochem. 1991 May 8;197(3):769–779. doi: 10.1111/j.1432-1033.1991.tb15970.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES