Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Jan;71(1):16–20. doi: 10.1073/pnas.71.1.16

The Kinetics of Hemolytic Plaque Formation

Charles P De Lisi 1, George I Bell 1
PMCID: PMC387922  PMID: 4589890

Abstract

A mathematical analysis of the formation of hemolytic plaques in agar is presented. The results can be used to calculate the rate constant for antigen-antibody association and the distribution of antibody secretion rates. The limitations of the treatment and estimates of the expected errors involved are briefly discussed.

Keywords: antigen-antibody association, mathematical theory

Full text

PDF
16

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson B. Studies on the regulation of avidity at the level of the single antibody-forming cell. The effect of antigen dose and time after immunization. J Exp Med. 1970 Jul 1;132(1):77–88. doi: 10.1084/jem.132.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barth R. F., Merchant B. Adaptation of the hemolytic plaque technique for enumeration of immune cells responding to heterologous immunoglobulin antigens. Proc Soc Exp Biol Med. 1967 May;125(1):307–309. doi: 10.3181/00379727-125-32078. [DOI] [PubMed] [Google Scholar]
  3. Golub E. S., Mishell R. I., Weigle W. O., Dutton R. W. A modification of the hemolytic plaque assay for use with protein antigens. J Immunol. 1968 Jan;100(1):133–137. [PubMed] [Google Scholar]
  4. Harrell B. E., Merchant B. A hemolytic plaque technique for enumeration of cells producing antibody against penicillin. Int Arch Allergy Appl Immunol. 1967;32(1):21–26. doi: 10.1159/000229912. [DOI] [PubMed] [Google Scholar]
  5. Hornick C. L., Karuch F. Antibody affinity. 3. The role of multivalance. Immunochemistry. 1972 Mar;9(3):325–340. doi: 10.1016/0019-2791(72)90096-1. [DOI] [PubMed] [Google Scholar]
  6. INGRAHAM J. S., BUSSARD A. APPLICATION OF A LOCALIZED HEMOLYSIN REACTION FOR SPECIFIC DETECTION OF INDIVIDUAL ANTIBODY-FORMING CELLS. J Exp Med. 1964 Apr 1;119:667–684. doi: 10.1084/jem.119.4.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Landy M., Sanderson R. P., Jackson A. L. Humoral and cellular aspects of the immune response to the somatic antigen of Salmonella enteritidis. J Exp Med. 1965 Sep 1;122(3):483–504. doi: 10.1084/jem.122.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Merchant B., Petersen B. Comparative sensitivities of the hemolytic plaque-in-agar and microchamber assays for detection of rabbit immune cells. J Immunol. 1968 Nov;101(5):860–867. [PubMed] [Google Scholar]
  9. Möller G. 19S antibody production against soluble lipopolysaccharide antigens by individual lymphoid cells in vitro. Nature. 1965 Sep 11;207(5002):1166–1168. doi: 10.1038/2071166a0. [DOI] [PubMed] [Google Scholar]
  10. Nordin A. A., Cosenza H., Hopkins W. The use of concanavalin A for distinguishing IgM from IgG antibody-producing cells. J Immunol. 1969 Oct;103(4):859–861. [PubMed] [Google Scholar]
  11. Segre D., Segre M. Hemolytic plaque formation by mouse spleen cells producing antibodies to ovalbumin. Immunochemistry. 1968 Mar;5(2):206–212. doi: 10.1016/0019-2791(68)90104-3. [DOI] [PubMed] [Google Scholar]
  12. Suzuki T., Deutsch H. F. Dissociation, reaggregation, and subunit structure studies of some human gamma-M-globulins. J Biol Chem. 1967 Jun 10;242(11):2725–2738. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES