Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Jan;71(1):128–131. doi: 10.1073/pnas.71.1.128

A Calcium Ionophore Simulating the Action of Epinephrine on the α-Adrenergic Receptor

Zvi Selinger 1, Sara Eimerl 1, Michael Schramm 1
PMCID: PMC387949  PMID: 4149343

Abstract

Calcium acting through the ionophore A-23187 caused massive K+ release from rat parotid slices. The ionophore thus simulates the action of epinephrine on the α-adrenergic receptor in this system. The α-adrenergic and cholinergic receptors are, however, not involved in the action of the ionophore since phetolamine and atropine had no effect on the ionophore-induced K+ release. Amylase secretion, which is induced by epinephrine through the β-adrenergic receptor but does not require Ca++ in the medium, was only slightly increased by the ionophore in the presence of Ca++. The K+ released by Ca++ through the ionophore was regained by the cells upon chelation of Ca++ with ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetic acid. Similar to the action of epinephrine on the α-adrenergic receptor, the K+ release induced by the ionophore is specific for Ca++, which cannot be substituted by 2.5 mM Sr++, Mg++, or Ba++. The results suggest that epinephrine, like the ionophore, introduces Ca++ into the cell to mediate K+ release. It is proposed that the ionophore A-23187 may be an effective probe to test whether other Ca++-requiring hormones and neurotransmitters act in a similar fashion to produce their diverse physiological responses.

Keywords: Ca++ requirement for hormone action, K+ release, Ca++ permeability

Full text

PDF
128

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batzri S., Selinger Z. Enzyme secretion mediated by the epinephrine -receptor in rat parotid slices. Factors governing efficiency of the process. J Biol Chem. 1973 Jan 10;248(1):356–360. [PubMed] [Google Scholar]
  2. Batzri S., Selinger Z., Schramm M., Robinovitch M. R. Potassium release mediated by the epinephrine -receptor in rat parotid slices. Properties and relation to enzyme secretion. J Biol Chem. 1973 Jan 10;248(1):361–368. [PubMed] [Google Scholar]
  3. Blum R. M., Hoffman J. F. Ca-induced K transport in human red cells: localization of the Ca-sensitive site to the inside of the membrane. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1146–1152. doi: 10.1016/s0006-291x(72)80094-9. [DOI] [PubMed] [Google Scholar]
  4. Caswell A. H., Pressman B. C. Kinetics of transport of divalent cations across sarcoplasmic reticulum vesicles induced by ionophores. Biochem Biophys Res Commun. 1972 Oct 6;49(1):292–298. doi: 10.1016/0006-291x(72)90043-5. [DOI] [PubMed] [Google Scholar]
  5. Douglas W. W., Poisner A. M. The influence of calcium on the secretory response of the submaxillary gland to acetylcholine or to noradrenaline. J Physiol. 1963 Mar;165(3):528–541. doi: 10.1113/jphysiol.1963.sp007076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GARDOS G. The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta. 1958 Dec;30(3):653–654. doi: 10.1016/0006-3002(58)90124-0. [DOI] [PubMed] [Google Scholar]
  7. GARDOS G. The role of calcium in the potassium permeability of human erythrocytes. Acta Physiol Acad Sci Hung. 1959;15(2):121–125. [PubMed] [Google Scholar]
  8. Hoffman J. F. The red cell membrane and the transport of sodium and potassium. Am J Med. 1966 Nov;41(5):666–680. doi: 10.1016/0002-9343(66)90029-5. [DOI] [PubMed] [Google Scholar]
  9. Hokin L. E. Effects of calcium omission on acetylcholine-stimulated amylase secretion and phospholipid synthesis in pigeon pancreas slices. Biochim Biophys Acta. 1966 Jan 25;115(1):219–221. doi: 10.1016/0304-4165(66)90066-3. [DOI] [PubMed] [Google Scholar]
  10. KATZ B., MILEDI R. THE EFFECT OF CALCIUM ON ACETYLCHOLINE RELEASE FROM MOTOR NERVE TERMINALS. Proc R Soc Lond B Biol Sci. 1965 Feb 16;161:496–503. doi: 10.1098/rspb.1965.0017. [DOI] [PubMed] [Google Scholar]
  11. Lew V. L. On the ATP dependence of the Ca 2+ -induced increase in K + permeability observed in human red cells. Biochim Biophys Acta. 1971 Jun 1;233(3):827–830. doi: 10.1016/0005-2736(71)90185-4. [DOI] [PubMed] [Google Scholar]
  12. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  13. Romero P. J., Whittam R. The control by internal calcium of membrane permeability to sodium and potassium. J Physiol. 1971 May;214(3):481–507. doi: 10.1113/jphysiol.1971.sp009445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rubin R. P. The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol Rev. 1970 Sep;22(3):389–428. [PubMed] [Google Scholar]
  15. Selinger Z., Batzri S., Eimerl S., Schramm M. Calcium and energy requirements for K + release mediated by the epinephrine -receptor in rat parotid slices. J Biol Chem. 1973 Jan 10;248(1):369–372. [PubMed] [Google Scholar]
  16. Wallach D., Schramm M. Calcium and the exportable protein in rat parotid gland. Parallel subcellular distribution and concomitant secretion. Eur J Biochem. 1971 Aug 16;21(3):433–437. doi: 10.1111/j.1432-1033.1971.tb01489.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES