Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jul 23;93(15):7628–7633. doi: 10.1073/pnas.93.15.7628

Cholesterol starvation induces differentiation of the intestinal parasite Giardia lamblia.

H D Luján 1, M R Mowatt 1, L G Byrd 1, T E Nash 1
PMCID: PMC38797  PMID: 8755526

Abstract

Giardia lamblia, like most human intestinal parasitic protozoa, sustains fundamental morphological and biochemical changes to survive outside the small intestine of its mammalian host by differentiating into an infective cyst. However, the stimulus that triggers this differentiation remains totally undefined. In this work, we demonstrate the induction of cyst formation in vitro when trophozoites are starved for cholesterol. Expression of cyst wall proteins was detected within encystation-specific secretory vesicles 90 min after the cells were placed in lipoprotein-deficient TYI-S-33 medium. Four cloned lines derived from two independent Giardia isolates were tested, and all formed cysts similarly. Addition of cholesterol, low density or very low density lipoproteins to the lipoprotein-deficient culture medium, inhibited the expression of cyst wall proteins, the generation of encystation-specific vesicles, and cyst wall biogenesis. In contrast, high density lipoproteins, phospholipids, bile salts, or fatty acids had little or no effect. These results indicate that cholesterol starvation is necessary and sufficient for the stimulation of Giardia encystation in vitro and, likely, in the intestine of mammalian hosts.

Full text

PDF
7628

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam R. D. The biology of Giardia spp. Microbiol Rev. 1991 Dec;55(4):706–732. doi: 10.1128/mr.55.4.706-732.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aggarwal A., Merritt J. W., Jr, Nash T. E. Cysteine-rich variant surface proteins of Giardia lamblia. Mol Biochem Parasitol. 1989 Jan 1;32(1):39–47. doi: 10.1016/0166-6851(89)90127-8. [DOI] [PubMed] [Google Scholar]
  3. Campbell J. D., Faubert G. M. Comparative studies on Giardia lamblia encystation in vitro and in vivo. J Parasitol. 1994 Feb;80(1):36–44. [PubMed] [Google Scholar]
  4. Carey M. C., Small D. M., Bliss C. M. Lipid digestion and absorption. Annu Rev Physiol. 1983;45:651–677. doi: 10.1146/annurev.ph.45.030183.003251. [DOI] [PubMed] [Google Scholar]
  5. De Pace D. M., Esfahani M. The effects of cholesterol depletion on cellular morphology. Anat Rec. 1987 Oct;219(2):135–143. doi: 10.1002/ar.1092190205. [DOI] [PubMed] [Google Scholar]
  6. Erlandsen S. L., Bemrick W. J., Schupp D. E., Shields J. M., Jarroll E. L., Sauch J. F., Pawley J. B. High-resolution immunogold localization of Giardia cyst wall antigens using field emission SEM with secondary and backscatter electron imaging. J Histochem Cytochem. 1990 May;38(5):625–632. doi: 10.1177/38.5.2332623. [DOI] [PubMed] [Google Scholar]
  7. Erlandsen S. L., Sherlock L. A., Bemrick W. J. The detection of Giardia muris and Giardia lamblia cysts by immunofluorescence in animal tissues and fecal samples subjected to cycles of freezing and thawing. J Parasitol. 1990 Apr;76(2):267–271. [PubMed] [Google Scholar]
  8. Farthing M. J., Keusch G. T., Carey M. C. Effects of bile and bile salts on growth and membrane lipid uptake by Giardia lamblia. Possible implications for pathogenesis of intestinal disease. J Clin Invest. 1985 Nov;76(5):1727–1732. doi: 10.1172/JCI112162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Field F. J., Kam N. T., Mathur S. N. Regulation of cholesterol metabolism in the intestine. Gastroenterology. 1990 Aug;99(2):539–551. doi: 10.1016/0016-5085(90)91040-d. [DOI] [PubMed] [Google Scholar]
  10. Gillin F. D., Boucher S. E., Rossi S. S., Reiner D. S. Giardia lamblia: the roles of bile, lactic acid, and pH in the completion of the life cycle in vitro. Exp Parasitol. 1989 Aug;69(2):164–174. doi: 10.1016/0014-4894(89)90185-9. [DOI] [PubMed] [Google Scholar]
  11. Gillin F. D., Gault M. J., Hofmann A. F., Gurantz D., Sauch J. F. Biliary lipids support serum-free growth of Giardia lamblia. Infect Immun. 1986 Sep;53(3):641–645. doi: 10.1128/iai.53.3.641-645.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gillin F. D., Hagblom P., Harwood J., Aley S. B., Reiner D. S., McCaffery M., So M., Guiney D. G. Isolation and expression of the gene for a major surface protein of Giardia lamblia. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4463–4467. doi: 10.1073/pnas.87.12.4463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gillin F. D., Reiner D. S., Gault M. J., Douglas H., Das S., Wunderlich A., Sauch J. F. Encystation and expression of cyst antigens by Giardia lamblia in vitro. Science. 1987 Feb 27;235(4792):1040–1043. doi: 10.1126/science.3547646. [DOI] [PubMed] [Google Scholar]
  14. Gillon J., Al Thamery D., Ferguson A. Features of small intestinal pathology (epithelial cell kinetics, intraepithelial lymphocytes, disaccharidases) in a primary Giardia muris infection. Gut. 1982 Jun;23(6):498–506. doi: 10.1136/gut.23.6.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  16. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  17. Haeffner E. W., Hoffmann C. J., Stoehr M., Scherf H. Cholesterol-induced growth stimulation, cell aggregation, and membrane properties of ascites tumor cells in culture. Cancer Res. 1984 Jun;44(6):2668–2676. [PubMed] [Google Scholar]
  18. Hay D. W., Carey M. C. Chemical species of lipids in bile. Hepatology. 1990 Sep;12(3 Pt 2):6S–16S. [PubMed] [Google Scholar]
  19. Hazel J. R., Williams E. E. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res. 1990;29(3):167–227. doi: 10.1016/0163-7827(90)90002-3. [DOI] [PubMed] [Google Scholar]
  20. Hofmann A. F. Chemistry and enterohepatic circulation of bile acids. Hepatology. 1984 Sep-Oct;4(5 Suppl):4S–14S. doi: 10.1002/hep.1840040803. [DOI] [PubMed] [Google Scholar]
  21. Hofmann A. F., Roda A. Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. J Lipid Res. 1984 Dec 15;25(13):1477–1489. [PubMed] [Google Scholar]
  22. Huisman G. W., Kolter R. Sensing starvation: a homoserine lactone--dependent signaling pathway in Escherichia coli. Science. 1994 Jul 22;265(5171):537–539. doi: 10.1126/science.7545940. [DOI] [PubMed] [Google Scholar]
  23. Jarroll E. L., Muller P. J., Meyer E. A., Morse S. A. Lipid and carbohydrate metabolism of Giardia lamblia. Mol Biochem Parasitol. 1981 Feb;2(3-4):187–196. doi: 10.1016/0166-6851(81)90099-2. [DOI] [PubMed] [Google Scholar]
  24. Kane A. V., Ward H. D., Keusch G. T., Pereira M. E. In vitro encystation of Giardia lamblia: large-scale production of in vitro cysts and strain and clone differences in encystation efficiency. J Parasitol. 1991 Dec;77(6):974–981. [PubMed] [Google Scholar]
  25. Kaneda Y., Goutsu T. Lipid analysis of Giardia lamblia and its culture medium. Ann Trop Med Parasitol. 1988 Feb;82(1):83–90. doi: 10.1080/00034983.1988.11812213. [DOI] [PubMed] [Google Scholar]
  26. Kaul D., Singh J. Exogenous cholesterol--initiated transmembrane signalling pathway regulates cholesterogenesis in human platelets. Cell Signal. 1994 Feb;6(2):141–145. doi: 10.1016/0898-6568(94)90070-1. [DOI] [PubMed] [Google Scholar]
  27. Keister D. B. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg. 1983;77(4):487–488. doi: 10.1016/0035-9203(83)90120-7. [DOI] [PubMed] [Google Scholar]
  28. Lujan H. D., Byrd L. G., Mowatt M. R., Nash T. E. Serum Cohn fraction IV-1 supports the growth of Giardia lamblia in vitro. Infect Immun. 1994 Oct;62(10):4664–4666. doi: 10.1128/iai.62.10.4664-4666.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lujan H. D., Mowatt M. R., Nash T. E. Lipid requirements and lipid uptake by Giardia lamblia trophozoites in culture. J Eukaryot Microbiol. 1996 May-Jun;43(3):237–242. doi: 10.1111/j.1550-7408.1996.tb01398.x. [DOI] [PubMed] [Google Scholar]
  30. Luján H. D., Marotta A., Mowatt M. R., Sciaky N., Lippincott-Schwartz J., Nash T. E. Developmental induction of Golgi structure and function in the primitive eukaryote Giardia lamblia. J Biol Chem. 1995 Mar 3;270(9):4612–4618. doi: 10.1074/jbc.270.9.4612. [DOI] [PubMed] [Google Scholar]
  31. Luján H. D., Mowatt M. R., Conrad J. T., Bowers B., Nash T. E. Identification of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. J Biol Chem. 1995 Dec 8;270(49):29307–29313. doi: 10.1074/jbc.270.49.29307. [DOI] [PubMed] [Google Scholar]
  32. McCaffery J. M., Faubert G. M., Gillin F. D. Giardia lamblia: traffic of a trophozoite variant surface protein and a major cyst wall epitope during growth, encystation, and antigenic switching. Exp Parasitol. 1994 Nov;79(3):236–249. doi: 10.1006/expr.1994.1087. [DOI] [PubMed] [Google Scholar]
  33. Mowatt M. R., Luján H. D., Cotten D. B., Bowers B., Yee J., Nash T. E., Stibbs H. H. Developmentally regulated expression of a Giardia lamblia cyst wall protein gene. Mol Microbiol. 1995 Mar;15(5):955–963. doi: 10.1111/j.1365-2958.1995.tb02364.x. [DOI] [PubMed] [Google Scholar]
  34. Nash T. E., Aggarwal A., Adam R. D., Conrad J. T., Merritt J. W., Jr Antigenic variation in Giardia lamblia. J Immunol. 1988 Jul 15;141(2):636–641. [PubMed] [Google Scholar]
  35. Ott P., Binggeli Y., Brodbeck U. A rapid and sensitive assay for determination of cholesterol in membrane lipid extracts. Biochim Biophys Acta. 1982 Feb 23;685(2):211–213. doi: 10.1016/0005-2736(82)90101-8. [DOI] [PubMed] [Google Scholar]
  36. Owen R. L., Nemanic P. C., Stevens D. P. Ultrastructural observations on giardiasis in a murine model. I. Intestinal distribution, attachment, and relationship to the immune system of Giardia muris. Gastroenterology. 1979 Apr;76(4):757–769. [PubMed] [Google Scholar]
  37. Poley J. R., Rosenfield S. Malabsorption in giardiasis: presence of a luminal barrier (mucoid pseudomembrane). A scanning and transmission electron microscopic study. J Pediatr Gastroenterol Nutr. 1982;1(1):63–80. [PubMed] [Google Scholar]
  38. Reiner D. S., Hetsko M. L., Das S., Ward H. D., McCaffery M., Gillin F. D. Giardia lamblia: absence of cyst antigens and reduced secretory vesicle formation and bile salt uptake in an encystation-deficient subline. Exp Parasitol. 1993 Dec;77(4):461–472. doi: 10.1006/expr.1993.1107. [DOI] [PubMed] [Google Scholar]
  39. Reiner D. S., McCaffery M., Gillin F. D. Sorting of cyst wall proteins to a regulated secretory pathway during differentiation of the primitive eukaryote, Giardia lamblia. Eur J Cell Biol. 1990 Oct;53(1):142–153. [PubMed] [Google Scholar]
  40. Schupp D. G., Erlandsen S. L. A new method to determine Giardia cyst viability: correlation of fluorescein diacetate and propidium iodide staining with animal infectivity. Appl Environ Microbiol. 1987 Apr;53(4):704–707. doi: 10.1128/aem.53.4.704-707.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schupp D. G., Januschka M. M., Sherlock L. A., Stibbs H. H., Meyer E. A., Bemrick W. J., Erlandsen S. L. Production of viable Giardia cysts in vitro: determination by fluorogenic dye staining, excystation, and animal infectivity in the mouse and Mongolian gerbil. Gastroenterology. 1988 Jul;95(1):1–10. doi: 10.1016/0016-5085(88)90283-1. [DOI] [PubMed] [Google Scholar]
  42. Shinitzky M., Rivnay B. Degree of exposure of membrane proteins determined by fluorescence quenching. Biochemistry. 1977 Mar 8;16(5):982–986. doi: 10.1021/bi00624a027. [DOI] [PubMed] [Google Scholar]
  43. Slayback J. R., Cheung L. W., Geyer R. P. Quantitative extraction of microgram amounts of lipid from cultured human cells. Anal Biochem. 1977 Dec;83(2):372–384. doi: 10.1016/0003-2697(77)90046-x. [DOI] [PubMed] [Google Scholar]
  44. Sogin M. L., Gunderson J. H., Elwood H. J., Alonso R. A., Peattie D. A. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science. 1989 Jan 6;243(4887):75–77. doi: 10.1126/science.2911720. [DOI] [PubMed] [Google Scholar]
  45. Stibbs H. H. Monoclonal antibody-based enzyme immunoassay for Giardia lamblia antigen in human stool. J Clin Microbiol. 1989 Nov;27(11):2582–2588. doi: 10.1128/jcm.27.11.2582-2588.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Thomson A. B., Schoeller C., Keelan M., Smith L., Clandinin M. T. Lipid absorption: passing through the unstirred layers, brush-border membrane, and beyond. Can J Physiol Pharmacol. 1993 Aug;71(8):531–555. doi: 10.1139/y93-078. [DOI] [PubMed] [Google Scholar]
  47. Towle H. C. Metabolic regulation of gene transcription in mammals. J Biol Chem. 1995 Oct 6;270(40):23235–23238. doi: 10.1074/jbc.270.40.23235. [DOI] [PubMed] [Google Scholar]
  48. Yee J., Dennis P. P. Isolation and characterization of a NADP-dependent glutamate dehydrogenase gene from the primitive eucaryote Giardia lamblia. J Biol Chem. 1992 Apr 15;267(11):7539–7544. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES