Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Feb;71(2):359–362. doi: 10.1073/pnas.71.2.359

Differential Interaction of Cholesterol with Phosphatidylcholine on the Inner and Outer Surfaces of Lipid Bilayer Vesicles

Ching-Hsien Huang 1,2, James P Sipe 1,2, S T Chow 1,2, R Bruce Martin 1,2
PMCID: PMC388004  PMID: 4521808

Abstract

The separate identification of the -N+-(CH3)3 groups located on the outside and inside of phospholipid bilayers observed in proton magnetic resonance spectroscopy upon addition of low concentrations of praseodymium ion was exploited to investigate the effects of incorporated cholesterol. Only about 7% of the phosphate groups on the outside of the bilayer belong to a class of strong binding or shifting sites. Upon addition of up to about 30% cholesterol to egg lecithin bilayers, no changes in chemical shift or ratio of areas of peaks due to outer and inner -N+(CH3)3 groups appear. At about 30% incorporated cholesterol, an abrupt decrease occurs in the chemical-shift difference between -N+(CH3)3 groups located on the outer and inner bilayer surfaces, and an abrupt increase occurs in the ratio of the areas of the two peaks. For L-α-dipalmitoyl lecithin bilayers, an abrupt change in chemical-shift difference occurring between 10 and 20% cholesterol is not accompanied by a change in the relative number of -N+(CH3)3 groups located on the outer and inner surfaces. These results are interpreted as due to the homogeneous distribution of up to 30% cholesterol in egg lecithin bilayers. Above 30%, cholesterol is asymmetrically distributed in favor of the inner layer. In egg lecithin with a variety of polyunsaturated side chains, the side chains with the greater number of double bonds are preferentially displaced by high concentrations of cholesterol, which accounts for the increase in the ratio of outer to inner -N+(CH3)3 groups. Such preferential displacement by cholesterol cannot occur with the saturated L-α-dipalmitoyl lecithin. It is suggested that modified phospholipid vesicles of low radii of curvature may provide high concentrations of “active sites” present in membranes.

Keywords: chemical shift, inner and outer monolayers of vesicle bilayers, cholesterol-phospholipid interaction

Full text

PDF
359

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bittman R., Blau L. The phospholipid-cholesterol interaction. Kinetics of water permeability in liposomes. Biochemistry. 1972 Dec 5;11(25):4831–4839. doi: 10.1021/bi00775a029. [DOI] [PubMed] [Google Scholar]
  2. Engelman D. M., Rothman J. E. The planar organization of lecithin-cholesterol bilayers. J Biol Chem. 1972 Jun 10;247(11):3694–3697. [PubMed] [Google Scholar]
  3. Finer E. G., Flook A. G., Hauser H. The nature and origin of the NMR spectrum of unsonicated and sonicated aqueous egg yolk lecithin dispersions. Biochim Biophys Acta. 1972 Jan 27;260(1):59–69. doi: 10.1016/0005-2760(72)90074-4. [DOI] [PubMed] [Google Scholar]
  4. Hinz H. J., Sturtevant J. M. Calorimetric investigation of the influence of cholesterol on the transition properties of bilayers formed from synthetic L- -lecithins in aqueous suspension. J Biol Chem. 1972 Jun 10;247(11):3697–3700. [PubMed] [Google Scholar]
  5. Horwitz A. F., Michaelson D., Klein M. P. Magnetic resonance studies on membrane and model membrane systems. 3. Fatty acid motions in aqueous lecithin dispersions. Biochim Biophys Acta. 1973 Feb 27;298(1):1–7. doi: 10.1016/0005-2736(73)90002-3. [DOI] [PubMed] [Google Scholar]
  6. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
  7. Ladbrooke B. D., Williams R. M., Chapman D. Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim Biophys Acta. 1968 Apr 29;150(3):333–340. doi: 10.1016/0005-2736(68)90132-6. [DOI] [PubMed] [Google Scholar]
  8. Levine Y. K., Lee A. G., Birdsall N. J., Metcalfe J. C., Robinson J. D. The interaction of paramagnetic ions and spin labels with lecithin bilayers. Biochim Biophys Acta. 1973 Feb 16;291(3):592–607. doi: 10.1016/0005-2736(73)90464-1. [DOI] [PubMed] [Google Scholar]
  9. Levine Y. K., Wilkins M. H. Structure of oriented lipid bilayers. Nat New Biol. 1971 Mar 17;230(11):69–72. doi: 10.1038/newbio230069a0. [DOI] [PubMed] [Google Scholar]
  10. Rand R. P., Luzzati V. X-ray diffraction study in water of lipids extracted from human erythrocytes: the position of cholesterol in the lipid lamellae. Biophys J. 1968 Jan;8(1):125–137. doi: 10.1016/S0006-3495(68)86479-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rothman J. E., Engelman D. M. Molecular mechanism for the interaction of phospholipid with cholesterol. Nat New Biol. 1972 May 10;237(71):42–44. doi: 10.1038/newbio237042a0. [DOI] [PubMed] [Google Scholar]
  12. SCHWENK E., WERTHESSEN N. T. Studies on the biosynthesis of cholesterol. III. Purification of C14-cholesterol from perfusions of livers and other organs. Arch Biochem Biophys. 1952 Oct;40(2):334–341. doi: 10.1016/0003-9861(52)90119-7. [DOI] [PubMed] [Google Scholar]
  13. de Kruyff B., Demel R. A., van Deenen L. L. The effect of cholesterol and epicholesterol incorporation on the permeability and on the phase transition of intact Acholeplasma laidlawii cell membranes and derived liposomes. Biochim Biophys Acta. 1972 Jan 17;255(1):331–347. doi: 10.1016/0005-2736(72)90032-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES