Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Feb;71(2):404–407. doi: 10.1073/pnas.71.2.404

Chromosome Assignment of the Human Gene for Galactose-1-phosphate Uridyltransferase*

N C Sun 1, C C Chang 1, E H Y Chu 1
PMCID: PMC388014  PMID: 4521812

Abstract

Somatic cell hybrids formed between galactose-negative mutant Chinese hamster cells and human lymphocytes were selected in galactose medium and analyzed for the concurrent presence of specific human chromosome(s) and human galactose-1-phosphate uridyltransferase. In one of the hybrid clones only a single human chromosome, A2, was consistently present when the hybrid cells were maintained in the selective medium, suggesting that the location of the structural gene for galactose-1-phosphate uridyltransferase is on this chromosome. Among subclones derived from this cell hybrid in the absence of selection, a complete concordance was demonstrated between the ability or inability to utilize galactose and the concomitant presence or absence of the human transferase and the A2 chromosome.

Keywords: gene mapping, Chinese hamster cells, cell fusion

Full text

PDF
404

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adhya S. L., Shapiro J. A. The galactose operon of E. coli K-12. I. Structural and pleiotropic mutations of the operon. Genetics. 1969 Jun;62(2):231–247. doi: 10.1093/genetics/62.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassel J., Mortimer R. Genetic order of the galactose structural genes in Saccharomyces cerevisiae. J Bacteriol. 1971 Oct;108(1):179–183. doi: 10.1128/jb.108.1.179-183.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Choi K. W., Bloom A. D. Biochemically marked lymphocytoid lines: establishment of Lesch-Nyhan cells. Science. 1970 Oct 2;170(3953):89–90. doi: 10.1126/science.170.3953.89. [DOI] [PubMed] [Google Scholar]
  4. Chu E. H., Sun N. C., Chang C. C. Induction of auxotrophic mutations by treatment of Chinese hamster cells with 5-bromodeoxyuridine and black light. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3459–3463. doi: 10.1073/pnas.69.11.3459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jami J., Grandchamp S., Ephrussi B. Sur le comportement caryologique des hybrides callulaires homme x souris. C R Acad Sci Hebd Seances Acad Sci D. 1971 Jan 11;272(2):323–326. [PubMed] [Google Scholar]
  6. KALCKAR H. M., BRAGANCA B., MUNCH-PETERSEN H. M. Uridyl transferases and the formation of uridine diphosphogalactose. Nature. 1953 Dec 5;172(4388):1038–1038. [PubMed] [Google Scholar]
  7. Klebe R. J., Chen T., Ruddle F. H. Controlled production of proliferating somatic cell hybrids. J Cell Biol. 1970 Apr;45(1):74–82. doi: 10.1083/jcb.45.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Káo F. T., Puck T. T. Genetics of somatic mammalian cells: linkage studies with human-Chinese hamster cell hybrids. Nature. 1970 Oct 24;228(5269):329–332. doi: 10.1038/228329a0. [DOI] [PubMed] [Google Scholar]
  9. LELOIR L. F. The enzymatic transformation of uridine diphosphate glucose into a galactose derivative. Arch Biochem Biophys. 1951 Sep;33(2):186–190. doi: 10.1016/0003-9861(51)90096-3. [DOI] [PubMed] [Google Scholar]
  10. Migeon B. R., Miller C. S. Human-mouse somatic cell hybrids with single human chromosome (group E): link with thymidine kinase activity. Science. 1968 Nov 29;162(3857):1005–1006. doi: 10.1126/science.162.3857.1005. [DOI] [PubMed] [Google Scholar]
  11. Miller O. J., Allderdice P. W., Miller D. A., Breg W. R., Migeon B. R. Human thymidine kinase gene locus: assignment to chromosome 17 in a hybrid of man and mouse cells. Science. 1971 Jul 16;173(3993):244–245. doi: 10.1126/science.173.3993.244. [DOI] [PubMed] [Google Scholar]
  12. Poste G. Virus-induced polykaryocytosis and the mechanism of cell fusion. Adv Virus Res. 1970;16:303–356. doi: 10.1016/s0065-3527(08)60026-3. [DOI] [PubMed] [Google Scholar]
  13. Ricciuti F., Ruddle F. H. Assignment of nucleoside phosphorylase to D-14 and localization of X-linked loci in man by somatic cell genetics. Nat New Biol. 1973 Feb 7;241(110):180–182. doi: 10.1038/newbio241180a0. [DOI] [PubMed] [Google Scholar]
  14. Ruddle F. H., Chapman V. M., Ricciuti F., Murnane M., Klebe R., Meera Khan P. Linkage relationships of seventeen human gene loci as determined by man--mouse somatic cell hybrids. Nat New Biol. 1971 Jul 21;232(29):69–73. doi: 10.1038/newbio232069a0. [DOI] [PubMed] [Google Scholar]
  15. Ruddle F. H. Linkage analysis in man by somatic cell genetics. Nature. 1973 Mar 16;242(5394):165–169. doi: 10.1038/242165a0. [DOI] [PubMed] [Google Scholar]
  16. Stadler J. K., Adelberg E. A. Cell cycle changes and the ability of cells to undergo virus-induced fusion. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1929–1933. doi: 10.1073/pnas.69.7.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tedesco T. A. Human galactose 1-phosphate uridyltransferase. Purification, antibody production, and comparison of the wild type, Duarte variant, and galactosemic gene products. J Biol Chem. 1972 Oct 25;247(20):6631–6636. [PubMed] [Google Scholar]
  18. Tedesco T. A., Mellman W. J. Galactosemia: evidence for a structural gene mutation. Science. 1971 May 14;172(3984):727–728. doi: 10.1126/science.172.3984.727. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES