Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Feb;71(2):460–463. doi: 10.1073/pnas.71.2.460

An Escherichia coli Mutant with an Altered Elongation Factor Tu

J H Lupker 1, G J Verschoor 1, F W M De Rooij 1, A Rörsch 1, L Bosch 1
PMCID: PMC388026  PMID: 4592692

Abstract

A thermosensitive mutant of Escherichia coli has been isolated that is unable to replicate the bacteriophage MS2 at 42° but permits phage production at 37°. Thermal inactivation studies of the supernatant enzymes show that this mutant contains a factor essential for the polymerization of phenylalanine from phenylalanyl-tRNA that at 50° is more rapidly inactivated than the corresponding wild-type factor. The elongation factor Tu (EF-Tu) was isolated and purified to apparent homogeneity as the EF-Tu·GDP complex, both from mutant and wild-type cells.

Addition of purified wild-type EF-Tu·GDP to reaction mixtures fully restored the activity of thermally inactivated mutant supernatants. These experiments excluded EF-Ts as the thermolabile factor involved. Similar inactivation studies, dealing with the purified factors and performed in reaction mixtures that were not supplemented with GDP, revealed that the half-life of mutant EF-Tu·GDP at 50° was 1.5 min, that of the wild-type factor 6 min. Addition of GDP (10μM) to the medium reduced the inactivation rate of both wild-type and mutant factor and also the difference in inactivation kinetics. Besides the altered elongation factor Tu, the mutant skill contains a second mutation affecting the glutaminyl-tRNA synthetase.

Keywords: protein synthesis, heat inactivation kinetics, GDP

Full text

PDF
460

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai K. I., Kawakita M., Kaziro Y. Studies on polypeptide elongation factors from Escherichia coli. II. Purification of factors Tu-guanosine diphosphate, Ts, and Tu-Ts, and crystallization of Tu-guanosine diphosphate and Tu-Ts. J Biol Chem. 1972 Nov 10;247(21):7029–7037. [PubMed] [Google Scholar]
  2. Ballesta J. P., Vazquez D. Elongation factor T-dependent hydrolysis of guanosine triphosphate resistant to thiostrepton. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3058–3062. doi: 10.1073/pnas.69.10.3058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blumenthal T., Landers T. A., Weber K. Bacteriophage Q replicase contains the protein biosynthesis elongation factors EF Tu and EF Ts. Proc Natl Acad Sci U S A. 1972 May;69(5):1313–1317. doi: 10.1073/pnas.69.5.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caskey T., Leder P., Moldave K., Schlessinger D. Translation: its mechanism and control. Science. 1972 Apr 14;176(4031):195–197. doi: 10.1126/science.176.4031.195. [DOI] [PubMed] [Google Scholar]
  5. Gordon J. A stepwise reaction yielding a complex between a supernatant fraction from E. coli, guanosine 5'-triphosphate, and aminoacyl-sRNA. Proc Natl Acad Sci U S A. 1968 Jan;59(1):179–183. doi: 10.1073/pnas.59.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haseltine W. A. In vitro transcription of Escherichia coli ribosomal RNA genes. Nature. 1972 Feb 11;235(5337):329–333. doi: 10.1038/235329a0. [DOI] [PubMed] [Google Scholar]
  7. Kinoshita T., Kawano G., Tanaka N. Association of fusidic acid sensitivity with G factor in a protein-synthesizing system. Biochem Biophys Res Commun. 1968 Dec 9;33(5):769–773. doi: 10.1016/0006-291x(68)90226-x. [DOI] [PubMed] [Google Scholar]
  8. Kuwano M., Ono M., Yamamoto M., Endo H., Kamiya T. Elongation factor T altered in a temperature-sensitive Escherichia coli mutant. Nat New Biol. 1973 Jul 25;244(134):107–109. doi: 10.1038/newbio244107a0. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lucas-Lenard J., Haenni A. L. Requirement of granosine 5'-triphosphate for ribosomal binding of aminoacyl-SRNA. Proc Natl Acad Sci U S A. 1968 Feb;59(2):554–560. doi: 10.1073/pnas.59.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lucas-Lenard J., Lipmann F. Separation of three microbial amino acid polymerization factors. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1562–1566. doi: 10.1073/pnas.55.6.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lucas-Lenard J. Protein biosynthesis. Annu Rev Biochem. 1971;40:409–448. doi: 10.1146/annurev.bi.40.070171.002205. [DOI] [PubMed] [Google Scholar]
  13. Miller D. L., Weissbach H. Interactions between the elongation factors: the displacement of GPD from the TU-GDP complex by factor Ts. Biochem Biophys Res Commun. 1970 Mar 27;38(6):1016–1022. doi: 10.1016/0006-291x(70)90341-4. [DOI] [PubMed] [Google Scholar]
  14. Miller D. L., Weissbach H. Studies on the purification and properties of factor Tu from E. coli. Arch Biochem Biophys. 1970 Nov;141(1):26–37. doi: 10.1016/0003-9861(70)90102-5. [DOI] [PubMed] [Google Scholar]
  15. Pettijohn D. E. Ordered and preferential initiation of ribosomal RNA synthesis in vitro. Nat New Biol. 1972 Feb 16;235(59):204–206. doi: 10.1038/newbio235204a0. [DOI] [PubMed] [Google Scholar]
  16. Shorey R. L., Ravel J. M., Garner C. W., Shive W. Formation and properties of the aminoacyl transfer ribonucleic acid-guanosine triphosphate-protein complex. J Biol Chem. 1969 Sep 10;244(17):4555–4564. [PubMed] [Google Scholar]
  17. Tocchini-Valentini G. P., Felicetti L., Rinaldi G. M. Mutants of Escherichia coli blocked in protein synthesis: mutants with an altered G factor. Cold Spring Harb Symp Quant Biol. 1969;34:463–468. doi: 10.1101/sqb.1969.034.01.052. [DOI] [PubMed] [Google Scholar]
  18. Travers A. A., Kamen R. I., Schleif R. F. Factor necessary for ribosomal RNA synthesis. Nature. 1970 Nov 21;228(5273):748–751. doi: 10.1038/228748a0. [DOI] [PubMed] [Google Scholar]
  19. Travers A., Buckland R. Heterogeneity of E. coli RNA polymerase. Nat New Biol. 1973 Jun 27;243(130):257–260. doi: 10.1038/newbio243257a0. [DOI] [PubMed] [Google Scholar]
  20. Verhoef N. J., Bosch L. Chain initiation during polypeptide synthesis in cell-free bacterial systems programmed with a plant viral messenger. Initiation with N-acetylated aminoacyl-tRNAs on adjacent codons. Virology. 1971 Jul;45(1):75–84. doi: 10.1016/0042-6822(71)90114-0. [DOI] [PubMed] [Google Scholar]
  21. Voorma H. O., Benne R., den Hertog T. J. Binding of aminoacyl-tRNA to ribosomes programmed with bacteriophage MS2-RNA. Eur J Biochem. 1971 Feb;18(4):451–462. doi: 10.1111/j.1432-1033.1971.tb01263.x. [DOI] [PubMed] [Google Scholar]
  22. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  23. Weissbach H., Miller D. L., Hachmann J. Studies on the role of factor Ts in polypeptide synthesis. Arch Biochem Biophys. 1970 Mar;137(1):262–269. doi: 10.1016/0003-9861(70)90433-9. [DOI] [PubMed] [Google Scholar]
  24. Weissbach H., Redfield B., Brot N. Further studies on the role of factors Ts and Tu in protein synthesis. Arch Biochem Biophys. 1971 May;144(1):224–229. doi: 10.1016/0003-9861(71)90472-3. [DOI] [PubMed] [Google Scholar]
  25. Weissbach H., Redfield B., Hachmann J. Studies on the role of factor Ts in aminoacyl-tRNA binding to ribosomes. Arch Biochem Biophys. 1970 Nov;141(1):384–386. doi: 10.1016/0003-9861(70)90150-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES