Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Feb;71(2):558–562. doi: 10.1073/pnas.71.2.558

The Kinetics of Conformational Changes in Hemoglobin, Studied by Laser Photolysis

B Alpert *, R Banerjee *, L Lindqvist
PMCID: PMC388047  PMID: 4521822

Abstract

Photolysis of carbon monoxide and oxygen derivatives of hemoglobin by a short laser pulse produces a transient species that rapidly decays to normal deoxyhemoglobin. The effect, which is also observed on single chain proteins and on noncooperative aggregated forms, has been interpreted as corresponding to structural changes in the heme pocket on ligand dissociation. The decay of the transient species follows first-order kinetics with constants ranging from 0.8 to 1.8 × 107 sec-1. In cooperative hemoglobins, the kinetic constants are pH-dependent, though remaining first- or pseudo first-order at all wavelengths. This shows the close linkage of tertiary and quaternary structure changes in normal hemoglobin.

Keywords: myoglobin, cooperative interactions, ligand binding

Full text

PDF
558

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTONINI E., SCHUSTER T. D., BRUNORI M., WYMAN J. THE KINETICS OF THE BOHR EFFECT IN THE REACTION OF HUMAN HEMOGLOBIN WITH CARBON MONOXIDE. J Biol Chem. 1965 May;240:2262–2264. [PubMed] [Google Scholar]
  2. ANTONINI E., WYMAN J., BRUNORI M., BUCCI E., FRONTICELLI C., ROSSI-FANELLI A. STUDIES ON THE RELATIONS BETWEEN MOLECULAR AND FUNCTIONAL PROPERTIES OF HEMOGLOBIN. IV. THE BOHR EFFECT IN HUMAN HEMOGLOBIN MEASURED BY PROTON BINDING. J Biol Chem. 1963 Sep;238:2950–2957. [PubMed] [Google Scholar]
  3. Alpert B., Banerjee R., Lindqvist L. Rapid structural changes in human hemoglobin studied by laser photolysis. Biochem Biophys Res Commun. 1972 Jan 31;46(2):913–918. doi: 10.1016/s0006-291x(72)80228-6. [DOI] [PubMed] [Google Scholar]
  4. Antonini E., Anderson N. M., Brunori M. Properties of the product of partial photodissociation of carbon monoxide hemoglobin. J Biol Chem. 1972 Jan 10;247(1):319–321. [PubMed] [Google Scholar]
  5. Eaton W. A., Hochstrasser R. M. Single-crystal spectra of ferrimyoglobin complexes in polarized light. J Chem Phys. 1968 Aug 1;49(3):985–995. doi: 10.1063/1.1670263. [DOI] [PubMed] [Google Scholar]
  6. GIBSON Q. H. An apparatus for flash photolysis and its application to the reactions of myoglobin with gases. J Physiol. 1956 Oct 29;134(1):112–122. doi: 10.1113/jphysiol.1956.sp005627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GIBSON Q. H. The photochemical formation of a quickly reacting form of haemoglobin. Biochem J. 1959 Feb;71(2):293–303. doi: 10.1042/bj0710293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gibson Q. H., Antonini E. Observations on rapidly reacting hemoglobin. J Biol Chem. 1967 Oct 25;242(20):4678–4681. [PubMed] [Google Scholar]
  9. Haldane J., Smith J. L. The Oxygen Tension of Arterial Blood. J Physiol. 1896 Dec 3;20(6):497–520. doi: 10.1113/jphysiol.1896.sp000634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hopfield J. J., Ogawa S., Shulman R. G. The rate of carbon monoxide binding to hemoglobin Kansas. Biochem Biophys Res Commun. 1972 Dec 18;49(6):1480–1484. doi: 10.1016/0006-291x(72)90506-2. [DOI] [PubMed] [Google Scholar]
  11. MacQuarrie R., Gibson Q. H. Ligand binding and release of an analogue of 2,3-diphosphoglycerate from human hemoglobin. J Biol Chem. 1972 Sep 25;247(18):5686–5694. [PubMed] [Google Scholar]
  12. McCray J. A. Oxygen recombination kinetics following laser photolysis of oxyhemoglobin. Biochem Biophys Res Commun. 1972 Apr 14;47(1):187–193. doi: 10.1016/s0006-291x(72)80027-5. [DOI] [PubMed] [Google Scholar]
  13. Noble R. W., Brunori M., Wyman J., Antonini E. Studies on the quantum yields of the photodissociation of carbon monoxide from hemoglobin and myoglobin. Biochemistry. 1967 Apr;6(4):1216–1222. doi: 10.1021/bi00856a035. [DOI] [PubMed] [Google Scholar]
  14. Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
  15. Phillipson P. E., Ackerson B. J., Wyman J. Heme proteins: effect of an intermediate on photochemical behavior. Proc Natl Acad Sci U S A. 1973 May;70(5):1550–1553. doi: 10.1073/pnas.70.5.1550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. ROUGHTON F. J., OTIS A. B., LYSTER R. L. The determination of the individual equilibrium constants of the four intermediate reactions between oxygen and sheep haemoglobin. Proc R Soc Lond B Biol Sci. 1955 Aug 16;144(914):29–54. doi: 10.1098/rspb.1955.0032. [DOI] [PubMed] [Google Scholar]
  17. Simon S. R., Arndt D. J., Konigsberg W. H. Structure and functional properties of chemically modified horse hemoglobin. I. Determination of the functional properties. J Mol Biol. 1971 May 28;58(1):69–77. doi: 10.1016/0022-2836(71)90232-4. [DOI] [PubMed] [Google Scholar]
  18. Simon S. R., Konigsberg W. H. Chemical modification of hemoglobins: a study of conformation restraint by internal bridging. Proc Natl Acad Sci U S A. 1966 Aug;56(2):749–756. doi: 10.1073/pnas.56.2.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Szabo A., Karplus M. Interpretation of the binding of carbon monoxide to hemoglobin under photodissociating conditions. Proc Natl Acad Sci U S A. 1973 Mar;70(3):673–674. doi: 10.1073/pnas.70.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES