Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Mar;71(3):807–810. doi: 10.1073/pnas.71.3.807

Carotenoid Transformations in the Chloroplast Envelope

S W Jeffrey 1,*, Roland Douce 1,, A A Benson 1
PMCID: PMC388103  PMID: 16592147

Abstract

The envelope of the spinach chloroplast is a yellow membrane system with a unique carotenoid composition. Envelopes prepared from dark-treated leaves had a violaxanthin content up to 3.5 times the lutein plus zeaxanthin content, whereas in chloroplast envelopes from illuminated leaves this ratio was only 0.75. Light-catalyzed changes in violaxanthin content also occurred in the thylakoid fraction.

The role of this reversible light-catalyzed de-epoxidation of violaxanthin in the function of the envelope of the chloroplast is discussed.

Keywords: spinach, light-catalyzed changes

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Douce R., Holtz R. B., Benson A. A. Isolation and properties of the envelope of spinach chloroplasts. J Biol Chem. 1973 Oct 25;248(20):7215–7222. [PubMed] [Google Scholar]
  2. Hager A., Stransky H. Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. 3. Grünalgen. Arch Mikrobiol. 1970;72(1):68–83. [PubMed] [Google Scholar]
  3. Hager A., Stransky H. Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. I. Methoden zur Identifizierung der Pigmente. Arch Mikrobiol. 1970;71(2):132–163. [PubMed] [Google Scholar]
  4. Jeffrey S. W. Quantitative thin-layer chromatography of chlorophylls and carotenoids from marine algae. Biochim Biophys Acta. 1968 Aug 20;162(2):271–285. doi: 10.1016/0005-2728(68)90109-6. [DOI] [PubMed] [Google Scholar]
  5. KRINSKY N. I. CAROTENOID DE-EPOXIDATIONS IN ALGAE. I. PHOTOCHEMICAL TRANSFORMATION OF ANTHERAXANTHIN TO ZEAXANTHIN. Biochim Biophys Acta. 1964 Nov 29;88:487–491. [PubMed] [Google Scholar]
  6. LEECH R. M. THE ISOLATION OF STRUCTURALLY INTACT CHLOROPLASTS. Biochim Biophys Acta. 1964 May 25;79:637–639. doi: 10.1016/0926-6577(64)90235-9. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. YAMAMOTO H. Y., NAKAYAMA T. O., CHICHESTER C. O. Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys. 1962 Apr;97:168–173. doi: 10.1016/0003-9861(62)90060-7. [DOI] [PubMed] [Google Scholar]
  9. Yamamoto H. Y., Chang J. L., Aihara M. S. Light-induced interconversion of violaxanthin and zeaxanthin in New Zealand spinach-leaf segments. Biochim Biophys Acta. 1967 Jul 25;141(2):342–347. doi: 10.1016/0304-4165(67)90108-0. [DOI] [PubMed] [Google Scholar]
  10. Yamamoto H. Y., Kamite L., Wang Y. Y. An Ascorbate-induced Absorbance Change in Chloroplasts from Violaxanthin De-epoxidation. Plant Physiol. 1972 Feb;49(2):224–228. doi: 10.1104/pp.49.2.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yamamoto H. Y., Wang Y., Kamite L. A chloroplast absorbance change from violaxanthin de-epoxidation. A possible component of 515 nm changes. Biochem Biophys Res Commun. 1971 Jan 8;42(1):37–42. doi: 10.1016/0006-291x(71)90358-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES