Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Mar;71(3):885–888. doi: 10.1073/pnas.71.3.885

Evolution and the Distribution of Glutaminyl and Asparaginyl Residues in Proteins

Arthur B Robinson 1
PMCID: PMC388120  PMID: 4522799

Abstract

Recent experiments on the deamidation of glutaminyl and asparaginyl residues in peptides and proteins support the hypothesis that these residues may serve as molecular clocks that control biological processes. A hypothesis is now offered that suggests that these molecular clocks are set by rejection or accumulation of appropriate sequences of residues including a glutaminyl or asparaginyl residue during evolution.

Keywords: molecular clock, amino acids, deamidation half-time

Full text

PDF
885

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DAVISON A. N. Metabolically inert proteins of the central and peripheral nervous system, muscle and tendon. Biochem J. 1961 Feb;78:272–282. doi: 10.1042/bj0780272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. EASTOE J. E. The amino acid composition of mammalian collagen and gelatin. Biochem J. 1955 Dec;61(4):589–600. doi: 10.1042/bj0610589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FLETCHER M. J., SANADI D. R. Turnover of rat-liver mitochondria. Biochim Biophys Acta. 1961 Aug 5;51:356–360. doi: 10.1016/0006-3002(61)90177-9. [DOI] [PubMed] [Google Scholar]
  4. Flatmark T. On the heterogeneity of beef heart cytochrome c. 3. A kinetic study of the non-enzymic deamidation of the main subfractions (Cy I-Cy 3). Acta Chem Scand. 1966;20(6):1487–1496. doi: 10.3891/acta.chem.scand.20-1487. [DOI] [PubMed] [Google Scholar]
  5. Flatmark T., Sletten K. Multiple forms of cytochrome c in the rat. Precursor-product relationship between the main component Cy I and the minor components Cy II and Cy 3 in vivo. J Biol Chem. 1968 Apr 10;243(7):1623–1629. [PubMed] [Google Scholar]
  6. Hansen N. E., Karle H., Andersen V. Lysozyme turnover in the rat. J Clin Invest. 1971 Jul;50(7):1473–1477. doi: 10.1172/JCI106632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KELLER P. J., COHEN E., NEURATH H. The proteins of bovine pancreatic juice. II. Rates of synthesis in vivo of the cationic proteins. J Biol Chem. 1959 Feb;234(2):311–315. [PubMed] [Google Scholar]
  8. Lai C. Y., Chen C., Horecker B. L. Primary structure of two COOH-terminal hexapeptides from rabbit muscle aldolase: a difference in the structure of the alpha and beta subunits. Biochem Biophys Res Commun. 1970 Jul 27;40(2):461–468. doi: 10.1016/0006-291x(70)91031-4. [DOI] [PubMed] [Google Scholar]
  9. MORRIS A. J., DICKMAN S. R. Biosynthesis of ribonuclease in mouse pancreas. J Biol Chem. 1960 May;235:1404–1408. [PubMed] [Google Scholar]
  10. McKerrow J. H., Robinson A. B. Deamidation of asparaginyl residues as a hazard in experimental protein and peptide procedures. Anal Biochem. 1971 Aug;42(2):565–568. doi: 10.1016/0003-2697(71)90074-1. [DOI] [PubMed] [Google Scholar]
  11. Midelfort C. F., Mehler A. H. Deamidation in vivo of an asparagine residue of rabbit muscle aldolase. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1816–1819. doi: 10.1073/pnas.69.7.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. NEUBERGER A., NIVEN J. S. F. Haemoglobin formation in rabbits. J Physiol. 1951 Feb;112(3-4):292–310. doi: 10.1113/jphysiol.1951.sp004530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Piha R. S., Cuénod M., Waelsch H. Metabolism of histones of brain and liver. J Biol Chem. 1966 May 25;241(10):2397–2404. [PubMed] [Google Scholar]
  14. Robinson A. B., Irving K., McCrea M. Acceleration of the rate of deamidation of GlyArgAsnArgGly and of human transferrin by addition of L-ascorbic acid. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2122–2123. doi: 10.1073/pnas.70.7.2122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Robinson A. B., McKerrow J. H., Cary P. Controlled deamidation of peptides and proteins: an experimental hazard and a possible biological timer. Proc Natl Acad Sci U S A. 1970 Jul;66(3):753–757. doi: 10.1073/pnas.66.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Robinson A. B., Scotchler J. W., McKerrow J. H. Rates of nonenzymatic deamidation of glutaminyl and asparaginyl residues in pentapeptides. J Am Chem Soc. 1973 Nov 28;95(24):8156–8159. doi: 10.1021/ja00805a032. [DOI] [PubMed] [Google Scholar]
  17. Robinson A. B., Tedro S. Sequence dependent deamidation rates for model peptides of hen egg-white lysozyme. Int J Pept Protein Res. 1973;5(4):275–278. doi: 10.1111/j.1399-3011.1973.tb03461.x. [DOI] [PubMed] [Google Scholar]
  18. VELICK S. F. The metabolism of myosin, the meromyosins, actin and tropomyosin in the rabbit. Biochim Biophys Acta. 1956 Apr;20(1):228–236. doi: 10.1016/0006-3002(56)90281-5. [DOI] [PubMed] [Google Scholar]
  19. Wood J. G., King N. Turnover of basic protein of rat brain. Nature. 1971 Jan 1;229(5279):56–58. doi: 10.1038/229056a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES