Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Mar;71(3):999–1003. doi: 10.1073/pnas.71.3.999

Genetic Differentiation Within and Between Species of the Drosophila willistoni Group*

Francisco J Ayala 1, Martin L Tracey 1
PMCID: PMC388145  PMID: 4362644

Abstract

We describe allelic variation at 28 loci in six Caribbean populations of four sympatric species of Drosophila. Within any one species the allelic frequencies are very similar from population to population, although there is evidence of local as well as regional genetic differentiation. The genetic distance is greater between populations from different islands than between populations of the same island. When the allelic frequencies are compared between different species, a remarkable pattern appears. In any pair of species nearly half of the loci have essentially identical allelic frequencies, while nearly the other half of the loci have different alleles and in different frequencies. The loci with nearly identical allelic frequencies are different when different pairs of species are compared. The patterns of allelic variation within and between species are inconsistent with the hypothesis that the variation is adaptively neutral. Migration or mutation cannot explain the patterns of genetic variation, either. Balancing natural selection is the main process maintaining protein polymorphisms in natural populations.

Keywords: natural selection, evolution, adaptation, isozymes, Caribbean islands

Full text

PDF
999

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayala F. J., Anderson W. W. Evidence of natural selection in molecular evolution. Nat New Biol. 1973 Feb 28;241(113):274–276. doi: 10.1038/newbio241274a0. [DOI] [PubMed] [Google Scholar]
  2. Ayala F. J., Powell J. R., Dobzhansky T. Polymorphisms in continental and island populations of Drosophila willistoni. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2480–2483. doi: 10.1073/pnas.68.10.2480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ayala F. J., Powell J. R., Tracey M. L. Enzyme variability in the Drosophila Willistoni group. V. Genic variation in natural populations of Drosophila equinoxialis. Genet Res. 1972 Aug;20(1):19–42. doi: 10.1017/s0016672300013562. [DOI] [PubMed] [Google Scholar]
  4. Ayala F. J., Powell J. R., Tracey M. L., Mourão C. A., Pérez-Salas S. Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics. 1972 Jan;70(1):113–139. doi: 10.1093/genetics/70.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kimura M., Ohta T. Protein polymorphism as a phase of molecular evolution. Nature. 1971 Feb 12;229(5285):467–469. doi: 10.1038/229467a0. [DOI] [PubMed] [Google Scholar]
  6. King J. L., Jukes T. H. Non-Darwinian evolution. Science. 1969 May 16;164(3881):788–798. doi: 10.1126/science.164.3881.788. [DOI] [PubMed] [Google Scholar]
  7. Richmond R. C. Enzyme variability in the Drosophila willistoni group. 3. Amounts of variability in the superspecies, D. paulistorum. Genetics. 1972 Jan;70(1):87–112. doi: 10.1093/genetics/70.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES