Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Apr;71(4):1118–1122. doi: 10.1073/pnas.71.4.1118

Electron Transfer to Clostridial Rubredoxin: Kinetics of the Reduction by Hexaammineruthenium(II), Vanadous and Chromous Ions

Charles A Jacks *, Larry E Bennett *,*, Wayne N Raymond *, Walter Lovenberg
PMCID: PMC388174  PMID: 4524621

Abstract

The rate constants (25°, M-1 sec-1), activation enthalpies (kcal/mol), and activation entropies (e.u.) for the second-order reduction of oxidized clostridial rubredoxin by Ru(NH3)62+, V(H2O)62+, and Cr(H2O)62+ at I = 0.10 have been determined or estimated to be 9.5 × 104, ∼1.4, ∼-31 (pH 6.3-7.0); 1.6 × 104, 0.1, -40 (pH 3.5-4.5); and 1.2 × 103, ∼0, ∼-44 (pH 3.5-4.0), respectively. Ionic strength dependencies for the vanadium reaction are suggestive of a direct interaction of the reductants with the Fe(SR)4-1 site of oxidized rubredoxin. The results are consistent with outer-sphere mechanisms for all three reductants and an especially high inherent outer-sphere reactivity of rubredoxin. This high reactivity level is attributed to the low activation enthalpy demands of the iron-sulfur site of rubredoxin. Thus, the possibility is raised that the rate of reaction of rubredoxin with its physiological counterparts may be determined largely by the activation entropy demands imposed by the physiological reactant. Evidence is presented in support of an absolute entropy decrease of about 7.5 e.u. on going from oxidized to reduced rubredoxin, which is presumably attributable to the charge increase from Fe(SR)41- to Fe(SR)42- at the redox site.

Keywords: iron-sulfur proteins; activation enthalpies; activation entropies; rubredoxinII,III entropy difference; ionic strength effects

Full text

PDF
1118

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buchanan B. B., Arnon D. I. Ferredoxins: chemistry and function in photosynthesis, nitrogen fixation, and fermentative metabolism. Adv Enzymol Relat Areas Mol Biol. 1970;33:119–176. doi: 10.1002/9780470122785.ch3. [DOI] [PubMed] [Google Scholar]
  2. Carter C. W., Jr, Kraut J., Freer S. T., Alden R. A., Sieker L. C., Adman E., Jensen L. H. A comparison of Fe 4 S 4 clusters in high-potential iron protein and in ferredoxin. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3526–3529. doi: 10.1073/pnas.69.12.3526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dunham W. R., Palmer G., Sands R. H., Bearden A. J. On the structure of the iron-sulfur complex in the two-iron ferredoxins. Biochim Biophys Acta. 1971 Dec 7;253(2):373–384. doi: 10.1016/0005-2728(71)90041-7. [DOI] [PubMed] [Google Scholar]
  4. Eaton W. A., Lovenberg W. Near-infrared circular dichroism of an iron-sulfur protein. D leads to d transitions in rubredoxin. J Am Chem Soc. 1970 Dec 2;92(24):7195–7198. doi: 10.1021/ja00727a030. [DOI] [PubMed] [Google Scholar]
  5. Eaton W. A., Palmer G., Fee J. A., Kimura T., Lovenberg W. Tetrahedral iron in the active center of plant ferredoxins and beef adrenodoxin. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3015–3020. doi: 10.1073/pnas.68.12.3015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lovenberg W., Sobel B. E. Rubredoxin: a new electron transfer protein from Clostridium pasteurianum. Proc Natl Acad Sci U S A. 1965 Jul;54(1):193–199. doi: 10.1073/pnas.54.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lovenberg W., Williams W. M. Further observations on the chemical nature of rubredoxin from Clostridium pasteurianum. Biochemistry. 1969 Jan;8(1):141–148. doi: 10.1021/bi00829a020. [DOI] [PubMed] [Google Scholar]
  8. Watenpaugh K. D., Sieker L. C., Herriott J. R., Jensen L. H. The structure of a non-heme iron protein: rubredoxin at 1.5 Angstrom resolution. Cold Spring Harb Symp Quant Biol. 1972;36:359–367. doi: 10.1101/sqb.1972.036.01.047. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES