Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Apr;71(4):1133–1136. doi: 10.1073/pnas.71.4.1133

The Effect of Replacement of Methionine by Homocystine on Survival of Malignant and Normal Adult Mammalian Cells in Culture

Barbara C Halpern 1,2,3, Brian R Clark 1,2,3, Dorothy N Hardy 1,2,3, Richard M Halpern 1,2,3, Roberts A Smith 1,2,3
PMCID: PMC388177  PMID: 4524624

Abstract

In tissue cultures of normal adult and malignant mammalian cells, homocystine has been substituted for methionine in a medium rich in folic acid and cyanocobalamin. Normal adult cells thrive. Three highly malignant cell types from three different species, including man, die.

Keywords: cancer, metabolic defect, vitamin B12

Full text

PDF
1133

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENNETT M. A. Utilization of homocystine for growth in presence of vitamin B12 and folic acid. J Biol Chem. 1950 Dec;187(2):751–756. [PubMed] [Google Scholar]
  2. BUCHANAN J. M. THE FUNCTION OF VITAMIN B12 AND FOLIC ACID COENZYMES IN MAMMALIAN CELLS. Medicine (Baltimore) 1964 Nov;43:697–709. doi: 10.1097/00005792-196411000-00013. [DOI] [PubMed] [Google Scholar]
  3. Buch L., Streeter D., Halpern R. M., Simon L. N., Stout M. G., Smith R. A. Inhibition of transfer ribonucleic acid methylase activity from several human tumors by nicotinamide and nicotinamide analogs. Biochemistry. 1972 Feb 1;11(3):393–397. doi: 10.1021/bi00753a015. [DOI] [PubMed] [Google Scholar]
  4. Chello P. L., Bertino J. R. Dependence of 5-methyltetrahydrofolate utilization by L5178Y murine leukemia cells in vitro on the presence of hydroxycobalamin and transcobalamin II. Cancer Res. 1973 Aug;33(8):1898–1904. [PubMed] [Google Scholar]
  5. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  6. Finkelstein J. D., Kyle W., Harris B. J. Methionine metabolism in mammals. Regulation of homocysteine methyltransferases in rat tissue. Arch Biochem Biophys. 1971 Sep;146(1):84–92. doi: 10.1016/s0003-9861(71)80044-9. [DOI] [PubMed] [Google Scholar]
  7. KISLIUK R. L. THE ROLE OF ADENOSYLMETHIONINE AND 5-METHYLTETRAHYDROFOLATE IN THE REGULATION OF THE METABOLISM OF SINGLE CARBON UNITS. Medicine (Baltimore) 1964 Nov;43:711–713. doi: 10.1097/00005792-196411000-00014. [DOI] [PubMed] [Google Scholar]
  8. Kamely D., Littlefield J. W., Erbe R. W. Regulation of 5-methyltetrahydrofolate: homocysteine methyltransferase activity by methionine, vitamin B12, and folate in cultured baby hamster kidney cells. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2585–2589. doi: 10.1073/pnas.70.9.2585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kerwar S. S., Spears C., McAuslan B., Weissbach H. Studies on vitamin B12 metabolism in HeLa cells. Arch Biochem Biophys. 1971 Jan;142(1):231–237. doi: 10.1016/0003-9861(71)90279-7. [DOI] [PubMed] [Google Scholar]
  10. Kreis W., Hession C. Biological effects of enzymatic deprivation of L-methionine in cell culture and an experimental tumor. Cancer Res. 1973 Aug;33(8):1866–1869. [PubMed] [Google Scholar]
  11. Kreis W., Hession C. Isolation and purification of L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (L-methioninase) from Clostridium sporogenes. Cancer Res. 1973 Aug;33(8):1862–1865. [PubMed] [Google Scholar]
  12. Mangum J. H., Murray B. K., North J. A. Vitamin B 12 dependent methionine biosynthesis in cultured mammalian cells. Biochemistry. 1969 Sep;8(9):3496–3499. doi: 10.1021/bi00837a002. [DOI] [PubMed] [Google Scholar]
  13. Mangum J. H., North J. A. Vitamin B 12-dependent methionine biosynthesis in HEp-2 cells. Biochem Biophys Res Commun. 1968 Jul 11;32(1):105–110. doi: 10.1016/0006-291x(68)90433-6. [DOI] [PubMed] [Google Scholar]
  14. Mudd S. H., Levy H. L., Abeles R. H., Jennedy J. P., Jr A derangement in B 12 metabolism leading to homocystinemia, cystathioninemia and methylmalonic aciduria. Biochem Biophys Res Commun. 1969 Apr 10;35(1):121–126. doi: 10.1016/0006-291x(69)90491-4. [DOI] [PubMed] [Google Scholar]
  15. Mudd S. H., Levy H., Morrow G., 3rd Deranged B 12 metabolism: effects on sulfur amino acid metabolism. Biochem Med. 1970 Nov;4(3):193–214. doi: 10.1016/0006-2944(70)90049-9. [DOI] [PubMed] [Google Scholar]
  16. Mudd S. H., Uhlendorf B. W., Hinds K. R. Deranged B 12 metabolism: studies of fibroblasts grown in tissue culture. Biochem Med. 1970 Nov;4(3):215–239. doi: 10.1016/0006-2944(70)90050-5. [DOI] [PubMed] [Google Scholar]
  17. OYAMA V. I., EAGLE H. Measurement of cell growth in tissue culture with a phenol reagent (folin-ciocalteau). Proc Soc Exp Biol Med. 1956 Feb;91(2):305–307. doi: 10.3181/00379727-91-22245. [DOI] [PubMed] [Google Scholar]
  18. SUGIMURA T., BIRNBAUM S. M., WINITZ M., GREENSTEIN J. P. Quantitative nutritional studies with water-soluble, chemically defined diets. VIII. The forced feeding of diets each lacking in one essential amino acid. Arch Biochem Biophys. 1959 Apr;81(2):448–455. doi: 10.1016/0003-9861(59)90225-5. [DOI] [PubMed] [Google Scholar]
  19. du VIGNEAUD V., RESSLER C., RACHELE J. R. The biological synthesis of "labile methyl group". Science. 1950 Sep 8;112(2906):267–271. doi: 10.1126/science.112.2906.267. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES