Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Apr;71(4):1188–1192. doi: 10.1073/pnas.71.4.1188

Transfer of Newly Synthesized Proteins from Schwann Cells to the Squid Giant Axon

R J Lasek 1,*, H Gainer 1,, R J Przybylski 1,*
PMCID: PMC388189  PMID: 4524631

Abstract

The squid giant axon is presented as a model for the study of macromolecular interaction between cells in the nervous system. When the isolated giant axon was incubated in sea water containing [3H]leucine for 0.5-5 hr, newly synthesized proteins appeared in the sheath and axoplasm as demonstrated by: (i) radioautography, (ii) separation of the sheath and axoplasm by extrusion, and (iii) perfusion of electrically excitable axons. The absence of ribosomal RNA in the axoplasm [Lasek, R. J. et al. (1973) Nature 244, 162-165] coupled with other evidence indicates that the labeled proteins that are found in the axoplasm originate in the Schwann cells surrounding the axon. Approximately 50% of the newly synthesized Schwann cell proteins are transferred to the giant axon. These transferred proteins are soluble for the most part and range in molecular size from 12,000 to greater than 200,000 daltons. It is suggested that proteins transferred from the Schwann cell to the axon have a regulatory role in neuronal function.

Keywords: glia, neurons, secretion

Full text

PDF
1188

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAKER P. F., HODGKIN A. L., SHAW T. I. Replacement of the axoplasm of giant nerve fibres with artificial solutions. J Physiol. 1962 Nov;164:330–354. doi: 10.1113/jphysiol.1962.sp007025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett M. V. Function of electrotonic junctions in embryonic and adult tissues. Fed Proc. 1973 Jan;32(1):65–75. [PubMed] [Google Scholar]
  3. Fischer S., Litvak S. The incorporation of microinjected 14C-amino acids into TCA insoluble fractions of the giant axon of the squid. J Cell Physiol. 1967 Aug;70(1):69–74. doi: 10.1002/jcp.1040700110. [DOI] [PubMed] [Google Scholar]
  4. Gainer H. Isoelectric focusing of proteins at the 10 to 10 -g level. Anal Biochem. 1973 Feb;51(2):646–650. doi: 10.1016/0003-2697(73)90521-6. [DOI] [PubMed] [Google Scholar]
  5. Giuditta A., D'Udine B., Pepe M. Uptake of protein by the giant axon of the squid. Nat New Biol. 1971 Jan 6;229(1):29–30. doi: 10.1038/newbio229029a0. [DOI] [PubMed] [Google Scholar]
  6. Giuditta A., Dettbarn W. D., Brzin M. Protein synthesis in the isolated giant axon of the squid. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1284–1287. doi: 10.1073/pnas.59.4.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grafstein B., Laureno R. Transport of radioactivity from eye to visual cortex in the mouse. Exp Neurol. 1973 Apr;39(1):44–57. doi: 10.1016/0014-4886(73)90040-x. [DOI] [PubMed] [Google Scholar]
  8. Hoy R. R., Bittner G. D., Kennedy D. Regeneration in crustacean motoneurons: evidence for axonal fusion. Science. 1967 Apr 14;156(3772):251–252. doi: 10.1126/science.156.3772.251. [DOI] [PubMed] [Google Scholar]
  9. KAJI A., KAJI H., NOVELLI G. D. SOLUBLE AMINO ACID-INCORPORATING SYSTEM. I. PREPARATION OF THE SYSTEM AND NATURE OF THE REACTION. J Biol Chem. 1965 Mar;240:1185–1191. [PubMed] [Google Scholar]
  10. KOENIG E. SYNTHETIC MECHANISMS IN THE AXON. I. LOCAL AXONAL SYNTHESIS OF ACETYLCHOLINESTERASE. J Neurochem. 1965 May;12:343–355. doi: 10.1111/j.1471-4159.1965.tb04235.x. [DOI] [PubMed] [Google Scholar]
  11. Kolodny G. M. Cell to cell transfer of RNA into transformed cells. J Cell Physiol. 1972 Feb;79(1):147–150. doi: 10.1002/jcp.1040790117. [DOI] [PubMed] [Google Scholar]
  12. Krishnan N., Singer M. Penetration of peroxidase into peripheral nerve fibers. Am J Anat. 1973 Jan;136(1):1–14. doi: 10.1002/aja.1001360102. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lasek R. J., Dabrowski C., Nordlander R. Analysis of axoplasmic RNA from invertebrate giant axons. Nat New Biol. 1973 Aug 8;244(136):162–165. doi: 10.1038/newbio244162a0. [DOI] [PubMed] [Google Scholar]
  15. Lerman L., Watanabe A., Tasaki I. Intracellular perfusion of squid giant axons: recent findings and interpretations. Neurosci Res (N Y) 1969;2(0):71–109. [PubMed] [Google Scholar]
  16. Loewenstein W. R. Membrane junctions in growth and differentiation. Fed Proc. 1973 Jan;32(1):60–64. [PubMed] [Google Scholar]
  17. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  18. Nordlander R. H., Singer M. Electron microscopy of severed motor fibers in the crayfish. Z Zellforsch Mikrosk Anat. 1972;126(2):157–181. doi: 10.1007/BF00307214. [DOI] [PubMed] [Google Scholar]
  19. Singer M., Salpeter M. M. The transport of 3H-l-histidine through the Schwann and myelin sheath into the axon, including a reevaluation of myelin function. J Morphol. 1966 Nov;120(3):281–315. doi: 10.1002/jmor.1051200305. [DOI] [PubMed] [Google Scholar]
  20. Soffer R. L. The arginine transfer reaction. Biochim Biophys Acta. 1968 Jan 29;155(1):228–240. doi: 10.1016/0005-2787(68)90352-3. [DOI] [PubMed] [Google Scholar]
  21. Villegas J. Axon-Schwann cell interaction in the squid nerve fibre. J Physiol. 1972 Sep;225(2):275–296. doi: 10.1113/jphysiol.1972.sp009940. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES