Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Apr;71(4):1272–1276. doi: 10.1073/pnas.71.4.1272

Unequal Mitotic Sister Chromatid Exchange as the Mechanism of Ribosomal RNA Gene Magnification

Kenneth D Tartof 1
PMCID: PMC388208  PMID: 4208547

Abstract

It is hypothesized that magnification of the gene coding for ribosomal RNA occurs by unequal mitotic sister chromatid exchange on the basis of five different lines of evidence. These are: (1) rDNA magnification occurs in mitotically active germ cells; (2) decreases in rDNA redundancy can be genetically produced, a phenomenon termed reduction; (3) magnification and reduction events are reversible and reciprocal; (4) it is possible to generate bb+ and bb somatic bristle mosaics (bb mutants are partially deficient for rRNA genes); and (5) magnification of bb in a ring X chromosome is reduced. Implications of these results and the unequal sister exchange (USE) hypothesis are discussed.

Keywords: gene reduction, Drosophila melanogaster, bobbed mutants, gene expansion-contraction

Full text

PDF
1272

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atwood K. C. Some aspects of the bobbed problem in Drosophila. Genetics. 1969;61(1 Suppl):319–327. [PubMed] [Google Scholar]
  2. Birnstiel M. L., Wallace H., Sirlin J. L., Fischberg M. Localization of the ribosomal DNA complements in the nucleolar organizer region of Xenopus laevis. Natl Cancer Inst Monogr. 1966 Dec;23:431–447. [PubMed] [Google Scholar]
  3. Brink R. A., Styles E. D., Axtell J. D. Paramutation: directed genetic change. Paramutation occurs in somatic cells and heritably alters the functional state of a locus. Science. 1968 Jan 12;159(3811):161–170. doi: 10.1126/science.159.3811.161. [DOI] [PubMed] [Google Scholar]
  4. Brown D. D., Wensink P. C., Jordan E. A comparison of the ribosomal DNA's of Xenopus laevis and Xenopus mulleri: the evolution of tandem genes. J Mol Biol. 1972 Jan 14;63(1):57–73. doi: 10.1016/0022-2836(72)90521-9. [DOI] [PubMed] [Google Scholar]
  5. Gall J. G., Cohen E. H., Polan M. L. Reptitive DNA sequences in drosophila. Chromosoma. 1971;33(3):319–344. doi: 10.1007/BF00284948. [DOI] [PubMed] [Google Scholar]
  6. Gibson D. A., Prescott D. M. Induction of sister chromatid exchanges in chromosomes of rat kangaroo cells by tritium incorporated into DNA. Exp Cell Res. 1972 Oct;74(2):397–402. doi: 10.1016/0014-4827(72)90393-x. [DOI] [PubMed] [Google Scholar]
  7. Locker D., Prud'homme N. Etude de plusieurs facteurs faisant varier la fréquence de reversion au locus bobbed chez Drosophila melanogaster. Mol Gen Genet. 1973 Jul 31;124(1):11–19. doi: 10.1007/BF00267160. [DOI] [PubMed] [Google Scholar]
  8. McClintock B. The Production of Homozygous Deficient Tissues with Mutant Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chromosomes. Genetics. 1938 Jul;23(4):315–376. doi: 10.1093/genetics/23.4.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ritossa F. M., Atwood K. C., Lindsley D. L., Spiegelman S. On the chromosomal distribution of DNA complementary to ribosomal and soluble RNA. Natl Cancer Inst Monogr. 1966 Dec;23:449–472. [PubMed] [Google Scholar]
  10. Ritossa F. M. Unstable redundancy of genes for ribosomal RNA. Proc Natl Acad Sci U S A. 1968 Jun;60(2):509–516. doi: 10.1073/pnas.60.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ritossa F. Crossing-over between X AND Y chromosomes during ribosomal DNA magnification in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1950–1954. doi: 10.1073/pnas.70.7.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ritossa F. Procedure for magnification of lethal deletions of genes for ribosomal RNA. Nat New Biol. 1972 Nov 22;240(99):109–111. doi: 10.1038/newbio240109a0. [DOI] [PubMed] [Google Scholar]
  13. Schwartz D. Evidence for Sister-Strand Crossing over in Maize. Genetics. 1953 May;38(3):251–260. doi: 10.1093/genetics/38.3.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stern C. Somatic Crossing over and Segregation in Drosophila Melanogaster. Genetics. 1936 Nov;21(6):625–730. doi: 10.1093/genetics/21.6.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tartof K. D. Increasing the multiplicity of ribosomal RNA genes in Drosophila melanogaster. Science. 1971 Jan 22;171(3968):294–297. doi: 10.1126/science.171.3968.294. [DOI] [PubMed] [Google Scholar]
  16. Tartof K. D., Perry R. P. The 5 s RNA genes of Drosophila melanogaster. J Mol Biol. 1970 Jul 28;51(2):171–183. doi: 10.1016/0022-2836(70)90135-x. [DOI] [PubMed] [Google Scholar]
  17. Tartof K. D. Regulation of ribosomal RNA gene multiplicity in Drosophila melanogaster. Genetics. 1973 Jan;73(1):57–71. doi: 10.1093/genetics/73.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Taylor J. H., Woods P. S., Hughes W. L. THE ORGANIZATION AND DUPLICATION OF CHROMOSOMES AS REVEALED BY AUTORADIOGRAPHIC STUDIES USING TRITIUM-LABELED THYMIDINEE. Proc Natl Acad Sci U S A. 1957 Jan 15;43(1):122–128. doi: 10.1073/pnas.43.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES