Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Apr;71(4):1356–1360. doi: 10.1073/pnas.71.4.1356

Transfer RNA Conformation in Solution Investigated by Isotope Labeling

Ronald C Gamble 1,2, Paul R Schimmel 1,2
PMCID: PMC388227  PMID: 4598301

Abstract

The incorporation of tritium into the C-8 position of purine residues in yeast tRNAPhe is shown to be markedly dependent on the conformation of the molecule. The completely unfolded molecule incorporates tritium at a rate commensurate to that expected for free purine nucleotides, but partially or completely folded forms incorporate proportionately less. The labeling of specific purine sites is determined by digesting the nucleic acid with a specific nuclease and analyzing each of the radioactive fragments produced. This analysis reveals that the amount of labeling of a purine in the folded form is strongly dependent upon its position in the sequence, whereas purine labeling in the unfolded form is independent of sequence position. The labeling pattern of the different bases in the folded form agrees fairly well with what is expected, based on existing solution and x-ray data on the conformation, i.e., residues involved in helical sections or apparently masked by tertiary interactions label more slowly than those on the “outside” of the molecule. Finally, folding and unfolding of specific regions of the macromolecule may be followed by the isotope labeling.

Keywords: tritium labeling, radioactive fingerprint analysis, tertiary structure

Full text

PDF
1356

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brostoff S. W., Ingram V. M. Chemical modification of yeast alanine-tRNA with a radioactive carbodiimide. Science. 1967 Nov 3;158(3801):666–669. doi: 10.1126/science.158.3801.666. [DOI] [PubMed] [Google Scholar]
  2. Cameron V., Uhlenbeck O. C. Removal of Y-37 from tRNA phe yeast alters oligomer binding to two loops. Biochem Biophys Res Commun. 1973 Feb 5;50(3):635–640. doi: 10.1016/0006-291x(73)91291-6. [DOI] [PubMed] [Google Scholar]
  3. Cashmore A. R., Brown D. M., Smith J. D. Selective reaction of methoxyamine with cytosine bases in tyrosine transfer ribonucleic acid. J Mol Biol. 1971 Jul 28;59(2):359–373. doi: 10.1016/0022-2836(71)90056-8. [DOI] [PubMed] [Google Scholar]
  4. Cramer F., Doepner H., Haar F V. D., Schlimme E., Seidel H. On the conformation of transfer RNA. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1384–1391. doi: 10.1073/pnas.61.4.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cramer F. Three-dimensional structure of tRNA. Prog Nucleic Acid Res Mol Biol. 1971;11:391–421. doi: 10.1016/s0079-6603(08)60333-5. [DOI] [PubMed] [Google Scholar]
  6. Doppler-Bernardi F., Felsenfeld G. In vitro incorporation of tritium into native DNA. Biopolymers. 1969;8(6):733–741. doi: 10.1002/bip.1969.360080604. [DOI] [PubMed] [Google Scholar]
  7. ENGLANDER S. W. A HYDROGEN EXCHANGE METHOD USING TRITIUM AND SEPHADEX: ITS APPLICATION TO RIBONUCLEASE. Biochemistry. 1963 Jul-Aug;2:798–807. doi: 10.1021/bi00904a030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kim S. H., Quigley G. J., Suddath F. L., McPherson A., Sneden D., Kim J. J., Weinzierl J., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Science. 1973 Jan 19;179(4070):285–288. doi: 10.1126/science.179.4070.285. [DOI] [PubMed] [Google Scholar]
  9. Leng M., Felsenfeld G. A study of polyadenylic acid at neutral pH. J Mol Biol. 1966 Feb;15(2):455–466. doi: 10.1016/s0022-2836(66)80121-3. [DOI] [PubMed] [Google Scholar]
  10. Lesnik E. A., Maslova R. N., Samsonidze T. G., Varshavsky Y. M. Influence of tertiary structure upon the rate of isotope hydrogen exchange in C(8) H groups of tRNA purine residues. FEBS Lett. 1973 Jun 15;33(1):7–10. doi: 10.1016/0014-5793(73)80146-2. [DOI] [PubMed] [Google Scholar]
  11. Levy J., Rialdi G., Biltonen R. Thermodynamic studies of transfer ribonucleic acids. II. Characterization of the thermal unfolding of yeast phenylalanine-specific transfer ribonucleic acid. Biochemistry. 1972 Oct 24;11(22):4138–4144. doi: 10.1021/bi00772a017. [DOI] [PubMed] [Google Scholar]
  12. Litt M. Structural studies on transfer ribonucleic acid. I. Labeling of exposed guanine sites in yeast phenylalanine transfer ribonucleic acid with kethoxal. Biochemistry. 1969 Aug;8(8):3249–3253. doi: 10.1021/bi00836a017. [DOI] [PubMed] [Google Scholar]
  13. Poland D., Vournakis J. N., Scheraga H. A. Cooperative interactions in single-strand oligomers of adenylic acid. Biopolymers. 1966;4(2):223–235. doi: 10.1002/bip.1966.360040209. [DOI] [PubMed] [Google Scholar]
  14. Pongs O., Reinwald E., Stamp K. Complementary trimer binding to transfer RNA(Phe). FEBS Lett. 1971 Sep 1;16(4):275–277. doi: 10.1016/0014-5793(71)80368-x. [DOI] [PubMed] [Google Scholar]
  15. RajBhandary U. L., Chang S. H. Studies on polynucleotides. LXXXII. Yeast phenylalanine transfer ribonucleic acid: partial digestion with ribonuclease T-1 and derivation of the total primary structure. J Biol Chem. 1968 Feb 10;243(3):598–608. [PubMed] [Google Scholar]
  16. Samuelson G., Keller E. B. Excision of nucleotides from the dihydrouridine loop of yeast phenylalanine transfer ribonucleic acid. Biochemistry. 1972 Jan 4;11(1):30–35. doi: 10.1021/bi00751a006. [DOI] [PubMed] [Google Scholar]
  17. Searcy D. G. Techniques for DNA hybridization in vitro using non-radioactive DNA and DNA made radioactive by neutron activation, alkylation with radioactive alkylating agents, and by exchange with 3H2O. Biochim Biophys Acta. 1968 Sep 24;166(2):360–370. doi: 10.1016/0005-2787(68)90223-2. [DOI] [PubMed] [Google Scholar]
  18. Shelton K. R., Clark J. M., Jr A proton exchange between purines and water and its application to biochemistry. Biochemistry. 1967 Sep;6(9):2735–2739. doi: 10.1021/bi00861a013. [DOI] [PubMed] [Google Scholar]
  19. Smirnov Y. A., Fomina N. V., Kaverin N. V. A correlation between the buoyant density and the sedimentation coefficient of EMC viral polyribosomes. FEBS Lett. 1973 Dec 15;38(1):7–10. doi: 10.1016/0014-5793(73)80499-5. [DOI] [PubMed] [Google Scholar]
  20. Tomasz M. Extreme lability of the C-8 proton: a consequence of 7-methylation of guanine residues in model compounds and in DNA and its analytical application. Biochim Biophys Acta. 1970 Jan 21;199(1):18–28. doi: 10.1016/0005-2787(70)90690-8. [DOI] [PubMed] [Google Scholar]
  21. Tomasz M., Olson J., Mercado C. M. Mechanism of the isotopic exchange of the C-8 hydrogen of purines in nucleosides and in deoxyribonucleic acid. Biochemistry. 1972 Mar 28;11(7):1235–1241. doi: 10.1021/bi00757a019. [DOI] [PubMed] [Google Scholar]
  22. Uhlenbeck O. C., Baller J., Doty P. Complementary oligonucleotide binding to the anticodon loop of fMet-transfer RNA. Nature. 1970 Feb 7;225(5232):508–510. doi: 10.1038/225508a0. [DOI] [PubMed] [Google Scholar]
  23. Uhlenbeck O. C. Complementary oligonucleotide binding to transfer RNA. J Mol Biol. 1972 Mar 14;65(1):25–41. doi: 10.1016/0022-2836(72)90489-5. [DOI] [PubMed] [Google Scholar]
  24. Wong Y. P., Kearns D. R., Reid B. R., Shulman R. G. Investigation of exchangeable protons and the extent of base pairings in yeast phenylalanine transfer RNA by high resolution nuclear magnetic resonance. J Mol Biol. 1972 Dec 30;72(3):725–740. doi: 10.1016/0022-2836(72)90187-8. [DOI] [PubMed] [Google Scholar]
  25. Yoshida M., Ukita T. Modification of nucleosides and nucleotides. 8. The reaction rates of pseudouridine residues with acrylonitrile and its relation to the secondary structure of transfer ribonucleic acid. Biochim Biophys Acta. 1968 May 21;157(3):466–475. [PubMed] [Google Scholar]
  26. Zachau H. G. Transfer ribonucleic acids. Angew Chem Int Ed Engl. 1969 Oct;8(10):711–727. doi: 10.1002/anie.196907111. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES