Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Apr;71(4):1361–1365. doi: 10.1073/pnas.71.4.1361

Synthesis and Properties of Clostridium acidi-urici [Leu2]-Ferredoxin: A Function of the Peptide Chain and Evidence Against the Direct Role of the Aromatic Residues in Electron Transfer

Eglis T Lode 1, Cheryl L Murray 1, William V Sweeney 1, Jesse C Rabinowitz 1
PMCID: PMC388228  PMID: 4364535

Abstract

Tyrosyl or other aromatic residues generally occur in two conserved positions in the peptide chain of clostridial-type ferredoxins and have been implicated in the electron transfer function of these iron-sulfur proteins. We have prepared and determined some of the properties of a derivative of Clostridium acidi-urici ferredoxin, [Leu2]-ferredoxin, in which a leucyl residue has been substituted for the tyrosyl residue in position 2 from the amino terminus. [Leu2]-ferredoxin is fully active as an electron carrier in two biological assays, the phosphoroclastic enzyme system and the ferredoxin-dependent reduction of cytochrome c in the presence of ferredoxin-TPN reductase and TPNH. Quantitative electron paramagnetic resonance experiments indicate that [Leu2]-ferredoxin accepts nearly two electrons upon enzymatic reduction by pyruvate-ferredoxin oxidoreductase and an excess of pyruvate. If electron transfer to an iron-sulfur cluster is the rate-limiting step in the assays used, and if the rate of electron transfer through Tyr30 is not much faster than through Tyr2, these results indicate that the primary pathway of electron transfer in clostridial-type ferredoxins is not via Tyr or other aromatic amino-acid residues. The syntheses of other ferredoxin derivatives with amino-acid substitutions or deletions in positions 1 and 2 indicate that a large bulky residue, but not necessarily an aromatic residue, is needed in position 2 for the stability of this ferredoxin. The residue in position 2, therefore, appears to act as a hydrophobic shield for an iron-sulfur cluster.

Keywords: iron-sulfur protein, modified ferredoxins

Full text

PDF
1361

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman E. T., Sieker L. C., Jensen L. H. Structure of a bacterial ferredoxin. J Biol Chem. 1973 Jun 10;248(11):3987–3996. [PubMed] [Google Scholar]
  2. Averill B. A., Herskovitz T., Holm R. H., Ibers J. A. Synthetic analogs of the active sites of iron-sulfur proteins. II. Synthesis and structure of the tetra(mercapto-m 3 -sulfido-iron) clusters, (Fe 4 S 4 (SR) 4 ) 2- . J Am Chem Soc. 1973 May 30;95(11):3523–3534. doi: 10.1021/ja00792a013. [DOI] [PubMed] [Google Scholar]
  3. Bearden A. J., Malkin R. Quantitative EPR studies of the primary reaction of photosystem I in chloroplasts. Biochim Biophys Acta. 1972 Dec 14;283(3):456–468. doi: 10.1016/0005-2728(72)90262-9. [DOI] [PubMed] [Google Scholar]
  4. Benson A. M., Mower H. F., Yasunobu K. T. The amino acid sequence of Clostridium butyricum ferredoxin. Arch Biochem Biophys. 1967 Sep;121(3):563–575. doi: 10.1016/0003-9861(67)90039-2. [DOI] [PubMed] [Google Scholar]
  5. Buchanan B. B., Arnon D. I. Ferredoxins: chemistry and function in photosynthesis, nitrogen fixation, and fermentative metabolism. Adv Enzymol Relat Areas Mol Biol. 1970;33:119–176. doi: 10.1002/9780470122785.ch3. [DOI] [PubMed] [Google Scholar]
  6. Cammack R. "Super-reduction" of chromatium high-potential iron-sulphur protein in the presence of dimethyl sulphoxide. Biochem Biophys Res Commun. 1973 Sep 18;54(2):548–554. doi: 10.1016/0006-291x(73)91457-5. [DOI] [PubMed] [Google Scholar]
  7. Carter C. W., Jr, Freer S. T., Xuong N. H., Alden R. A., Kraut J. Structure of the iron-sulfur cluster in the Chromatius iron protein at 2.25 Angstrom resolution. Cold Spring Harb Symp Quant Biol. 1972;36:381–385. doi: 10.1101/sqb.1972.036.01.049. [DOI] [PubMed] [Google Scholar]
  8. Carter C. W., Jr, Kraut J., Freer S. T., Alden R. A., Sieker L. C., Adman E., Jensen L. H. A comparison of Fe 4 S 4 clusters in high-potential iron protein and in ferredoxin. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3526–3529. doi: 10.1073/pnas.69.12.3526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dus K., De Klerk H., Sletten K., Bartsch R. G. Chemical characterization of high potential iron proteins from Chromatium and Rhodopseudomonas gelatinosa. Biochim Biophys Acta. 1967 Jun 27;140(2):291–311. doi: 10.1016/0005-2795(67)90470-9. [DOI] [PubMed] [Google Scholar]
  10. Herskovitz T., Averill B. A., Holm R. H., Ibers J. A., Phillips W. D., Weiher J. F. Structure and properties of a synthetic analogue of bacterial iron--sulfur proteins. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2437–2441. doi: 10.1073/pnas.69.9.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hong J. S., Rabinowitz J. C. Molar extinction coefficient and iron and sulfide content of clostridial ferredoxin. J Biol Chem. 1970 Oct 10;245(19):4982–4987. [PubMed] [Google Scholar]
  12. Hong J. S., Rabinowitz J. C. The effects of chemical modifications on the reconstitution, activity, and stability of clostridial ferredoxin. J Biol Chem. 1970 Oct 10;245(19):4988–4994. [PubMed] [Google Scholar]
  13. LOVENBERG W., BUCHANAN B. B., RABINOWITZ J. C. STUDIES ON THE CHEMICAL NATURE OF CLOSTRIDIAL FERREDOXIN. J Biol Chem. 1963 Dec;238:3899–3913. [PubMed] [Google Scholar]
  14. Levy D., Carpenter F. H. The synthesis of triaminoacyl-insulins and the use of the t-butyloxycarbonyl group for the reversible blocking of the amino groups of insulin. Biochemistry. 1967 Nov;6(11):3559–3568. doi: 10.1021/bi00863a030. [DOI] [PubMed] [Google Scholar]
  15. Matsubara H., Sasaki R. M., Tsuchiya D. K., Evans M. C. The amino acid sequence of Chromatium ferredoxin. J Biol Chem. 1970 Apr 25;245(8):2121–2131. [PubMed] [Google Scholar]
  16. Mayhew S. G., Petering D., Palmer G., Foust G. P. Spectrophotometric titration of ferredoxins and Chromatium high potential iron protein with sodium dithionite. J Biol Chem. 1969 Jun 10;244(11):2830–2834. [PubMed] [Google Scholar]
  17. Orme-Johnson W. H. Iron-sulfur proteins: structure and function. Annu Rev Biochem. 1973;42(0):159–204. doi: 10.1146/annurev.bi.42.070173.001111. [DOI] [PubMed] [Google Scholar]
  18. Packer E. L., Sternlicht H., Rabinowitz J. C. The possible role of aromatic residues of Clostridium acidi-urici ferredoxin in electron transport. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3278–3282. doi: 10.1073/pnas.69.11.3278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rall S. C., Bolinger R. E., Cole R. D. The amino acid sequence of ferredoxin from Clostridium acidi-urici. Biochemistry. 1969 Jun;8(6):2486–2496. doi: 10.1021/bi00834a035. [DOI] [PubMed] [Google Scholar]
  20. Sieker L. C., Adman E., Jensen L. H. Structure of the Fe-S complex in a bacterial ferredoxin. Nature. 1972 Jan 7;235(5332):40–42. doi: 10.1038/235040a0. [DOI] [PubMed] [Google Scholar]
  21. Tanaka M., Haniu M., Matsueda G., Yasunobu K. T., Himes R. H., Akagi J. M., Barnes E. M., Devanathan T. The primary structure of the Clostridium tartarivorum ferredoxin, a heat-stable ferredoxin. J Biol Chem. 1971 Jun 25;246(12):3953–3960. [PubMed] [Google Scholar]
  22. Tanaka M., Nakashima T., Benson A., Mower H., Tasunobu K. T. The amino acid sequence of Clostridium pasteurianum ferredoxin. Biochemistry. 1966 May;5(5):1666–1681. doi: 10.1021/bi00869a032. [DOI] [PubMed] [Google Scholar]
  23. Tsunoda J. N., Yasunobu K. T., Whiteley H. R. Non-heme iron proteins. IX. The amino acid sequence of ferredoxin from Micrococcus aerogenes. J Biol Chem. 1968 Dec 10;243(23):6262–6272. [PubMed] [Google Scholar]
  24. Uyeda K., Rabinowitz J. C. Pyruvate-ferredoxin oxidoreductase. 3. Purification and properties of the enzyme. J Biol Chem. 1971 May 25;246(10):3111–3119. [PubMed] [Google Scholar]
  25. Yoch D. C., Arnon D. I. Two biologically active ferredoxins from the aerobic nitrogen-fixing bacteriu, Azotobacter vinelandii. J Biol Chem. 1972 Jul 25;247(14):4514–4520. [PubMed] [Google Scholar]
  26. Yoch D. C., Valentine R. C. Ferredoxins and flavodoxins of bacteria. Annu Rev Microbiol. 1972;26:139–162. doi: 10.1146/annurev.mi.26.100172.001035. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES