Abstract
Ion movements associated with the pH rise that is observed upon illumination of thylakoid suspensions at low pH have been studied by a multiparameter technique. Light-dependent, dark-reversible fluxes of H+, Cl-, Na+, K+ and divalent cations were monitored, together with simultaneous changes in the optical density of the suspension. Extensive uptake of Cl- and efflux of Mg2+ accompany the apparent inward movement of H+ in the light. Only minor efflux of K+ is seen and Na+ appears immobile. The Cl- and Mg2+ fluxes together compensate for most of the charge transferred as H+, contributing respectively about 49% and 43% on an equivalent basis. The ratio of Cl- influx to Mg2+ efflux is variable, but usually >1.0. The Mg2+ flux can be supplanted by (1) K+ flux, if the K+/Mg2+ activity ratio in the suspension is high, and (2) Ca2+ flux, if the thylakoids are equilibrated with suspending media containing Ca2+. The affinity of the divalentcation-binding sites, or carrier mechanism, is greater for Ca2+ than for Mg2+. Schemes can be drawn up to account for the observed ion movements on the basis of either a chemical or a chemiosmotic mechanism for energy transduction in chloroplasts. In intact chloroplasts, light-dependent control of Mg2+ distribution between thylakoid and stroma could serve to regulate enzyme activities in the carbon fixation pathway, and hence photosynthesis.
Keywords: pH shift, ion-specific electrode, conformational change, coupling mechanism
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AVRON M. Light-dependent adenosine triphosphatase in chloroplasts. J Biol Chem. 1962 Jun;237:2011–2017. [PubMed] [Google Scholar]
- Andrews T. J., Lorimer G. H., Tolbert N. E. Ribulose diphosphate oxygenase. I. Synthesis of phosphoglycolate by fraction-1 protein of leaves. Biochemistry. 1973 Jan 2;12(1):11–18. doi: 10.1021/bi00725a003. [DOI] [PubMed] [Google Scholar]
- Arntzen C. J., Dilley R. A., Neumann J. Localization of photophosphorylation and proton transport activities in various regions of the chloroplast lamellae. Biochim Biophys Acta. 1971 Sep 7;245(2):409–424. doi: 10.1016/0005-2728(71)90159-9. [DOI] [PubMed] [Google Scholar]
- Barber J. Stimulation of millisecond delayed light emission by KCl and NaCl gradients as a means of investigating the ionic permeability properties of the thylakoid membranes. Biochim Biophys Acta. 1972 Jul 12;275(1):105–116. doi: 10.1016/0005-2728(72)90029-1. [DOI] [PubMed] [Google Scholar]
- DILLEY R. A., VERNON L. P. CHANGES IN LIGHT-ABSORPTION AND LIGHT-SCATTERING PROPERTIES OF SPINACH CHLOROPLASTS UPON ILLUMINATION: RELATIONSHIP TO PHOTOPHOSPHORYLATION. Biochemistry. 1964 Jun;3:817–824. doi: 10.1021/bi00894a016. [DOI] [PubMed] [Google Scholar]
- Deamer D. W., Packer L. Light-dependent anion transport in isolated spinach chloroplasts. Biochim Biophys Acta. 1969 Apr 8;172(3):539–545. doi: 10.1016/0005-2728(69)90149-2. [DOI] [PubMed] [Google Scholar]
- Dilley R. A. Ion and water transport processes in spinach chloroplasts. Brookhaven Symp Biol. 1966;19:258–280. [PubMed] [Google Scholar]
- Dilley R. A., Vernon L. P. Ion and water transport processes related to the light-dependent shrinkage of spinach chloroplasts. Arch Biochem Biophys. 1965 Aug;111(2):365–375. doi: 10.1016/0003-9861(65)90198-0. [DOI] [PubMed] [Google Scholar]
- Duval D., Duranton J. On a non-chlorophyllic magnesium fraction bound to plastidial lamellar proteins from Zea mays L. Biochim Biophys Acta. 1972 Jul 3;274(1):240–245. doi: 10.1016/0005-2736(72)90297-0. [DOI] [PubMed] [Google Scholar]
- Gaensslen R. E., McCarty R. E. Amine uptake in chloroplasts. Arch Biochem Biophys. 1971 Nov;147(1):55–65. doi: 10.1016/0003-9861(71)90309-2. [DOI] [PubMed] [Google Scholar]
- Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
- Gross E., Dilley R. A., San Pietro A. Control of electron flow in chloroplasts by cations. Arch Biochem Biophys. 1969 Nov;134(2):450–462. doi: 10.1016/0003-9861(69)90305-1. [DOI] [PubMed] [Google Scholar]
- HIND G., JAGENDORF A. T. LIGHT SCATTERING CHANGES ASSOCIATED WITH THE PRODUCTION OF A POSSIBLE INTERMEDIATE IN PHOTOPHOSPHORYLATION. J Biol Chem. 1965 Jul;240:3195–3201. [PubMed] [Google Scholar]
- Hind G., Jagendorf A. T. SEPARATION OF LIGHT AND DARK STAGES IN PHOTOPHOSPHORYLATION. Proc Natl Acad Sci U S A. 1963 May;49(5):715–722. doi: 10.1073/pnas.49.5.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hind G., McCarty R. E. The role of cation fluxes in chloroplast activity. Photophysiology. 1973;0(0):113–156. doi: 10.1016/b978-0-12-282608-5.50010-2. [DOI] [PubMed] [Google Scholar]
- Izawa S., Good N. E. Effect of Salts and Electron Transport on the Conformation of Isolated Chloroplasts. II. Electron Microscopy. Plant Physiol. 1966 Mar;41(3):544–552. doi: 10.1104/pp.41.3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izawa S. The relation of post-illumination ATP formation capacity (X-E) to H+ accumulation in chloroplasts. Biochim Biophys Acta. 1970 Nov 3;223(1):165–173. doi: 10.1016/0005-2728(70)90141-6. [DOI] [PubMed] [Google Scholar]
- Lynn W. S. Inhibition of photophosphorylation by phenazine methosulfate. J Biol Chem. 1967 May 10;242(9):2186–2191. [PubMed] [Google Scholar]
- MacLennan D. H., Wong P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231–1235. doi: 10.1073/pnas.68.6.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell P. Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge. J Bioenerg. 1972 May;3(1):5–24. doi: 10.1007/BF01515993. [DOI] [PubMed] [Google Scholar]
- NEUMANN J., JAGENDORF A. T. LIGHT-INDUCED PH CHANGES RELATED PHOSPHORYLATION BY CHLOROPLASTS. Arch Biochem Biophys. 1964 Jul;107:109–119. doi: 10.1016/0003-9861(64)90276-0. [DOI] [PubMed] [Google Scholar]
- Nobel P. S. Calcium uptake, ATPase and photophosphorylation by chloroplasts in vitro. Nature. 1967 May 27;214(5091):875–877. doi: 10.1038/214875a0. [DOI] [PubMed] [Google Scholar]
- Nobel P. S. Light-induced changes in the ionic content of chloroplasts in Pisum sativum. Biochim Biophys Acta. 1969 Jan 14;172(1):134–143. doi: 10.1016/0005-2728(69)90098-x. [DOI] [PubMed] [Google Scholar]
- Packer L., Deamer D. W., Crofts A. R. Conformational changes in chloroplasts. Brookhaven Symp Biol. 1966;19:281–302. [PubMed] [Google Scholar]
- Polya G. M., Jagendorf A. T. Inactivation of energy-linked functions of chloroplasts by polyanions at low pH. Arch Biochem Biophys. 1970 Jun;138(2):540–550. doi: 10.1016/0003-9861(70)90379-6. [DOI] [PubMed] [Google Scholar]
- Reynafarje B., Lehninger A. L. High affinity and low affinity binding of Ca++ by rat liver mitochondria. J Biol Chem. 1969 Feb 25;244(4):584–593. [PubMed] [Google Scholar]
- Rottenberg H., Grunwald T., Avron M. Determination of pH in chloroplasts. I. Distribution of ( 14 C) methylamine. Eur J Biochem. 1972 Jan 31;25(1):54–63. doi: 10.1111/j.1432-1033.1972.tb01666.x. [DOI] [PubMed] [Google Scholar]
- Rottenberg H., Grunwald T. Determination of pH in chloroplasts. 3. Ammonium uptake as a measure of pH in chloroplasts and sub-chloroplast particles. Eur J Biochem. 1972 Jan 31;25(1):71–74. doi: 10.1111/j.1432-1033.1972.tb01668.x. [DOI] [PubMed] [Google Scholar]
- Rumberg B., Siggel U. pH changes in the inner phase of the thylakoids during photosynthesis. Naturwissenschaften. 1969 Mar;56(3):130–132. doi: 10.1007/BF00601025. [DOI] [PubMed] [Google Scholar]
- Rurainski H. J., Randles J., Hoch G. E. The relationship between P 700 and NADP reduction in chloroplasts. FEBS Lett. 1971 Feb 19;13(2):98–100. doi: 10.1016/0014-5793(71)80208-9. [DOI] [PubMed] [Google Scholar]
- Schuldiner S., Rottenberg H., Avron M. Determination of pH in chloroplasts. 2. Fluorescent amines as a probe for the determination of pH in chloroplasts. Eur J Biochem. 1972 Jan 31;25(1):64–70. doi: 10.1111/j.1432-1033.1972.tb01667.x. [DOI] [PubMed] [Google Scholar]
- Sun A. S., Sauer K. Pigment systems and electron transport in chloroplasts. II. Emerson enhancement in broken spinach chloroplasts. Biochim Biophys Acta. 1972 Feb 28;256(2):400–427. [PubMed] [Google Scholar]
- Walker D. A., Crofts A. R. Photosynthesis. Annu Rev Biochem. 1970;39:389–428. doi: 10.1146/annurev.bi.39.070170.002133. [DOI] [PubMed] [Google Scholar]
- Witt H. T. Coupling of quanta, electrons, fields, ions and phosphrylation in the functional membrane of photosynthesis. Results by pulse spectroscopic methods. Q Rev Biophys. 1971 Nov;4(4):365–477. doi: 10.1017/s0033583500000834. [DOI] [PubMed] [Google Scholar]
