Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Apr;71(4):1484–1488. doi: 10.1073/pnas.71.4.1484

Light-Dependent Redistribution of Ions in Suspensions of Chloroplast Thylakoid Membranes

Geoffrey Hind *, Herbert Y Nakatani *, Seikichi Izawa
PMCID: PMC388254  PMID: 4524652

Abstract

Ion movements associated with the pH rise that is observed upon illumination of thylakoid suspensions at low pH have been studied by a multiparameter technique. Light-dependent, dark-reversible fluxes of H+, Cl-, Na+, K+ and divalent cations were monitored, together with simultaneous changes in the optical density of the suspension. Extensive uptake of Cl- and efflux of Mg2+ accompany the apparent inward movement of H+ in the light. Only minor efflux of K+ is seen and Na+ appears immobile. The Cl- and Mg2+ fluxes together compensate for most of the charge transferred as H+, contributing respectively about 49% and 43% on an equivalent basis. The ratio of Cl- influx to Mg2+ efflux is variable, but usually >1.0. The Mg2+ flux can be supplanted by (1) K+ flux, if the K+/Mg2+ activity ratio in the suspension is high, and (2) Ca2+ flux, if the thylakoids are equilibrated with suspending media containing Ca2+. The affinity of the divalentcation-binding sites, or carrier mechanism, is greater for Ca2+ than for Mg2+. Schemes can be drawn up to account for the observed ion movements on the basis of either a chemical or a chemiosmotic mechanism for energy transduction in chloroplasts. In intact chloroplasts, light-dependent control of Mg2+ distribution between thylakoid and stroma could serve to regulate enzyme activities in the carbon fixation pathway, and hence photosynthesis.

Keywords: pH shift, ion-specific electrode, conformational change, coupling mechanism

Full text

PDF
1484

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVRON M. Light-dependent adenosine triphosphatase in chloroplasts. J Biol Chem. 1962 Jun;237:2011–2017. [PubMed] [Google Scholar]
  2. Andrews T. J., Lorimer G. H., Tolbert N. E. Ribulose diphosphate oxygenase. I. Synthesis of phosphoglycolate by fraction-1 protein of leaves. Biochemistry. 1973 Jan 2;12(1):11–18. doi: 10.1021/bi00725a003. [DOI] [PubMed] [Google Scholar]
  3. Arntzen C. J., Dilley R. A., Neumann J. Localization of photophosphorylation and proton transport activities in various regions of the chloroplast lamellae. Biochim Biophys Acta. 1971 Sep 7;245(2):409–424. doi: 10.1016/0005-2728(71)90159-9. [DOI] [PubMed] [Google Scholar]
  4. Barber J. Stimulation of millisecond delayed light emission by KCl and NaCl gradients as a means of investigating the ionic permeability properties of the thylakoid membranes. Biochim Biophys Acta. 1972 Jul 12;275(1):105–116. doi: 10.1016/0005-2728(72)90029-1. [DOI] [PubMed] [Google Scholar]
  5. DILLEY R. A., VERNON L. P. CHANGES IN LIGHT-ABSORPTION AND LIGHT-SCATTERING PROPERTIES OF SPINACH CHLOROPLASTS UPON ILLUMINATION: RELATIONSHIP TO PHOTOPHOSPHORYLATION. Biochemistry. 1964 Jun;3:817–824. doi: 10.1021/bi00894a016. [DOI] [PubMed] [Google Scholar]
  6. Deamer D. W., Packer L. Light-dependent anion transport in isolated spinach chloroplasts. Biochim Biophys Acta. 1969 Apr 8;172(3):539–545. doi: 10.1016/0005-2728(69)90149-2. [DOI] [PubMed] [Google Scholar]
  7. Dilley R. A. Ion and water transport processes in spinach chloroplasts. Brookhaven Symp Biol. 1966;19:258–280. [PubMed] [Google Scholar]
  8. Dilley R. A., Vernon L. P. Ion and water transport processes related to the light-dependent shrinkage of spinach chloroplasts. Arch Biochem Biophys. 1965 Aug;111(2):365–375. doi: 10.1016/0003-9861(65)90198-0. [DOI] [PubMed] [Google Scholar]
  9. Duval D., Duranton J. On a non-chlorophyllic magnesium fraction bound to plastidial lamellar proteins from Zea mays L. Biochim Biophys Acta. 1972 Jul 3;274(1):240–245. doi: 10.1016/0005-2736(72)90297-0. [DOI] [PubMed] [Google Scholar]
  10. Gaensslen R. E., McCarty R. E. Amine uptake in chloroplasts. Arch Biochem Biophys. 1971 Nov;147(1):55–65. doi: 10.1016/0003-9861(71)90309-2. [DOI] [PubMed] [Google Scholar]
  11. Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
  12. Gross E., Dilley R. A., San Pietro A. Control of electron flow in chloroplasts by cations. Arch Biochem Biophys. 1969 Nov;134(2):450–462. doi: 10.1016/0003-9861(69)90305-1. [DOI] [PubMed] [Google Scholar]
  13. HIND G., JAGENDORF A. T. LIGHT SCATTERING CHANGES ASSOCIATED WITH THE PRODUCTION OF A POSSIBLE INTERMEDIATE IN PHOTOPHOSPHORYLATION. J Biol Chem. 1965 Jul;240:3195–3201. [PubMed] [Google Scholar]
  14. Hind G., Jagendorf A. T. SEPARATION OF LIGHT AND DARK STAGES IN PHOTOPHOSPHORYLATION. Proc Natl Acad Sci U S A. 1963 May;49(5):715–722. doi: 10.1073/pnas.49.5.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hind G., McCarty R. E. The role of cation fluxes in chloroplast activity. Photophysiology. 1973;0(0):113–156. doi: 10.1016/b978-0-12-282608-5.50010-2. [DOI] [PubMed] [Google Scholar]
  16. Izawa S., Good N. E. Effect of Salts and Electron Transport on the Conformation of Isolated Chloroplasts. II. Electron Microscopy. Plant Physiol. 1966 Mar;41(3):544–552. doi: 10.1104/pp.41.3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Izawa S. The relation of post-illumination ATP formation capacity (X-E) to H+ accumulation in chloroplasts. Biochim Biophys Acta. 1970 Nov 3;223(1):165–173. doi: 10.1016/0005-2728(70)90141-6. [DOI] [PubMed] [Google Scholar]
  18. Lynn W. S. Inhibition of photophosphorylation by phenazine methosulfate. J Biol Chem. 1967 May 10;242(9):2186–2191. [PubMed] [Google Scholar]
  19. MacLennan D. H., Wong P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231–1235. doi: 10.1073/pnas.68.6.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mitchell P. Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge. J Bioenerg. 1972 May;3(1):5–24. doi: 10.1007/BF01515993. [DOI] [PubMed] [Google Scholar]
  21. NEUMANN J., JAGENDORF A. T. LIGHT-INDUCED PH CHANGES RELATED PHOSPHORYLATION BY CHLOROPLASTS. Arch Biochem Biophys. 1964 Jul;107:109–119. doi: 10.1016/0003-9861(64)90276-0. [DOI] [PubMed] [Google Scholar]
  22. Nobel P. S. Calcium uptake, ATPase and photophosphorylation by chloroplasts in vitro. Nature. 1967 May 27;214(5091):875–877. doi: 10.1038/214875a0. [DOI] [PubMed] [Google Scholar]
  23. Nobel P. S. Light-induced changes in the ionic content of chloroplasts in Pisum sativum. Biochim Biophys Acta. 1969 Jan 14;172(1):134–143. doi: 10.1016/0005-2728(69)90098-x. [DOI] [PubMed] [Google Scholar]
  24. Packer L., Deamer D. W., Crofts A. R. Conformational changes in chloroplasts. Brookhaven Symp Biol. 1966;19:281–302. [PubMed] [Google Scholar]
  25. Polya G. M., Jagendorf A. T. Inactivation of energy-linked functions of chloroplasts by polyanions at low pH. Arch Biochem Biophys. 1970 Jun;138(2):540–550. doi: 10.1016/0003-9861(70)90379-6. [DOI] [PubMed] [Google Scholar]
  26. Reynafarje B., Lehninger A. L. High affinity and low affinity binding of Ca++ by rat liver mitochondria. J Biol Chem. 1969 Feb 25;244(4):584–593. [PubMed] [Google Scholar]
  27. Rottenberg H., Grunwald T., Avron M. Determination of pH in chloroplasts. I. Distribution of ( 14 C) methylamine. Eur J Biochem. 1972 Jan 31;25(1):54–63. doi: 10.1111/j.1432-1033.1972.tb01666.x. [DOI] [PubMed] [Google Scholar]
  28. Rottenberg H., Grunwald T. Determination of pH in chloroplasts. 3. Ammonium uptake as a measure of pH in chloroplasts and sub-chloroplast particles. Eur J Biochem. 1972 Jan 31;25(1):71–74. doi: 10.1111/j.1432-1033.1972.tb01668.x. [DOI] [PubMed] [Google Scholar]
  29. Rumberg B., Siggel U. pH changes in the inner phase of the thylakoids during photosynthesis. Naturwissenschaften. 1969 Mar;56(3):130–132. doi: 10.1007/BF00601025. [DOI] [PubMed] [Google Scholar]
  30. Rurainski H. J., Randles J., Hoch G. E. The relationship between P 700 and NADP reduction in chloroplasts. FEBS Lett. 1971 Feb 19;13(2):98–100. doi: 10.1016/0014-5793(71)80208-9. [DOI] [PubMed] [Google Scholar]
  31. Schuldiner S., Rottenberg H., Avron M. Determination of pH in chloroplasts. 2. Fluorescent amines as a probe for the determination of pH in chloroplasts. Eur J Biochem. 1972 Jan 31;25(1):64–70. doi: 10.1111/j.1432-1033.1972.tb01667.x. [DOI] [PubMed] [Google Scholar]
  32. Sun A. S., Sauer K. Pigment systems and electron transport in chloroplasts. II. Emerson enhancement in broken spinach chloroplasts. Biochim Biophys Acta. 1972 Feb 28;256(2):400–427. [PubMed] [Google Scholar]
  33. Walker D. A., Crofts A. R. Photosynthesis. Annu Rev Biochem. 1970;39:389–428. doi: 10.1146/annurev.bi.39.070170.002133. [DOI] [PubMed] [Google Scholar]
  34. Witt H. T. Coupling of quanta, electrons, fields, ions and phosphrylation in the functional membrane of photosynthesis. Results by pulse spectroscopic methods. Q Rev Biophys. 1971 Nov;4(4):365–477. doi: 10.1017/s0033583500000834. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES