Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Apr;71(4):1520–1524. doi: 10.1073/pnas.71.4.1520

Role of Phosphate and Other Proton-Donating Anions in Respiration-Coupled Transport of Ca2+ by Mitochondria

Albert L Lehninger 1
PMCID: PMC388262  PMID: 4364542

Abstract

Measurements of extra oxygen consumption, 45Ca2+ uptake, and the osmotic expansion of the matrix compartment show that not all permeant anions are capable of supporting and accompanying the energy-dependent transport of Ca2+ from the medium into the matrix in respiring rat-liver mitochondria. Phosphate, arsenate, acetate, butyrate, β-hydroxybutyrate, lactate, and bicarbonate + CO2 supported Ca2+ uptake, whereas the permeant anions, nitrate, thiocyanate, chlorate, and perchlorate, did not. The active anions share a common denominator, the potential ability to donate a proton to the mitochondrial matrix; the inactive anions lack this capacity. Phosphate and the other active permeant anions move into the matrix in response to the alkaline-inside electrochemical gradient of protons generated across the mitochondrial membrane by electron transport, thus forming a negative-inside anion gradient. It is postulated that the latter gradient is the immediate “pulling” force for the influx of Ca2+ on the electrogenic Ca2+ carrier in respiring mitochondria under intracellular conditions. Since mitochondria in the cell are normally exposed to an excess of phosphate (and the bicarbonate-CO2 system), particularly in state 4, inward transport of these proton-yielding anions probably precedes and is necessary for inward transport of Ca2+ and other cations under biological conditions. These observations indicate that a negative-inside gradient of phosphate generated by electron transport is a common step and provides the immediate motive power not only for (a) the inward transport of dicarboxylates and tricarboxylates and (b) the energy-dependent exchange of external ADP3- for internal ATP4- during oxidative phosphorylation, as has already been established, but also for (c) the inward transport of Ca2+, K+, and other cations.

Keywords: Ca2+ transport, electron transport, oxidative phosphorylation

Full text

PDF
1520

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brierley G. P., Jurkowitz M., Scott K. M., Merola A. J. Ion transport by heart mitochondria. XX. Factors affecting passive osmotic swelling of isolated mitochondria. J Biol Chem. 1970 Oct 25;245(20):5404–5411. [PubMed] [Google Scholar]
  2. Brierley G. P., Jurkowitz M., Scott K. M., Merola A. J. Ion transport by heart mitochondria. XXII. Spontaneous, energy-linked accumulation of acetate and phosphate salts of monovalent cations. Arch Biochem Biophys. 1971 Dec;147(2):545–556. doi: 10.1016/0003-9861(71)90412-7. [DOI] [PubMed] [Google Scholar]
  3. CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
  4. CHAPPELL J. B., CROFTS A. R. CALCIUM ION ACCUMULATION AND VOLUME CHANGES OF ISOLATED LIVER MITOCHONDRIA. CALCIUM ION-INDUCED SWELLING. Biochem J. 1965 May;95:378–386. doi: 10.1042/bj0950378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chance B., Mela L. Hydrogen ion concentration changes in mitochondrial membranes. J Biol Chem. 1966 Oct 25;241(20):4588–4599. [PubMed] [Google Scholar]
  6. Chappell J. B. Systems used for the transport of substrates into mitochondria. Br Med Bull. 1968 May;24(2):150–157. doi: 10.1093/oxfordjournals.bmb.a070618. [DOI] [PubMed] [Google Scholar]
  7. Elder J. A., Lehninger A. L. Respiration-dependent transport of carbon dioxide into rat liver mitochondria. Biochemistry. 1973 Feb 27;12(5):976–982. doi: 10.1021/bi00729a029. [DOI] [PubMed] [Google Scholar]
  8. GREGG C. T., LEHNINGER A. L. DEPENDENCE OF RESPIRATION OF PHOSPHATE AND PHOSPHATE ACCEPTOR IN SUBMITOCHONDRIAL SYSTEMS. II. SONIC FRAGMENTS. Biochim Biophys Acta. 1963 Oct 8;78:27–44. doi: 10.1016/0006-3002(63)91606-8. [DOI] [PubMed] [Google Scholar]
  9. Gamble J. G., Lehninger A. L. Transport of ornithine and citrulline across the mitochondrial membrane. J Biol Chem. 1973 Jan 25;248(2):610–618. [PubMed] [Google Scholar]
  10. Heldt H. W., Klingenberg M., Milovancev M. Differences between the ATP-ADP ratios in the mitochondrial matrix and in the extramitochondrial space. Eur J Biochem. 1972 Nov 7;30(3):434–440. doi: 10.1111/j.1432-1033.1972.tb02115.x. [DOI] [PubMed] [Google Scholar]
  11. LEHNINGER A. L., GREGG C. T. DEPENDENCE OF RESPIRATION ON PHOSPHATE AND PHOSPHATE ACCEPTOR IN SUBMITOCHONDRIAL SYSTEMS. I. DIGITONIN FRAGMENTS. Biochim Biophys Acta. 1963 Oct 8;78:12–26. doi: 10.1016/0006-3002(63)91605-6. [DOI] [PubMed] [Google Scholar]
  12. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  13. Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McGivan J. D., Klingenberg M. Correlation between H+ and anion movement in mitochondria and the key role of the phosphate carrier. Eur J Biochem. 1971 Jun 11;20(3):392–399. doi: 10.1111/j.1432-1033.1971.tb01405.x. [DOI] [PubMed] [Google Scholar]
  15. Mitchell P., Moyle J. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem. 1969 Feb;7(4):471–484. doi: 10.1111/j.1432-1033.1969.tb19633.x. [DOI] [PubMed] [Google Scholar]
  16. Mitchell P., Moyle J. Respiration-driven proton translocation in rat liver mitochondria. Biochem J. 1967 Dec;105(3):1147–1162. doi: 10.1042/bj1051147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mitchell P., Moyle J. Translocation of some anions cations and acids in rat liver mitochondria. Eur J Biochem. 1969 Jun;9(2):149–155. doi: 10.1111/j.1432-1033.1969.tb00588.x. [DOI] [PubMed] [Google Scholar]
  18. Papa S., Lofrumento N. E., Quagliariello E., Meijer A. J., Tager J. M. Coupling mechanisms in anionic substrate transport across the inner membrane of rat-liver mitochondria. J Bioenerg. 1971 Sep;1(3):287–307. doi: 10.1007/BF01516289. [DOI] [PubMed] [Google Scholar]
  19. Papa S., Quagliariello E., Chance B. Reaction of inorganic phosphate with mitochondrial respiratory chain. Biochemistry. 1970 Apr 14;9(8):1706–1715. doi: 10.1021/bi00810a009. [DOI] [PubMed] [Google Scholar]
  20. ROSSI C. S., LEHNINGER A. L. STOICHIOMETRIC RELATIONSHIPS BETWEEN ACCUMULATION OF IONS BY MITOCHONDRIA AND THE ENERGY-COUPLING SITES IN THE RESPIRATORY CHAIN. Biochem Z. 1963;338:698–713. [PubMed] [Google Scholar]
  21. ROSSI C. S., LEHNINGER A. L. STOICHIOMETRY OF RESPIRATORY STIMULATION, ACCUMULATION OF CA++ AND PHOSPHATE, AND OXIDATIVE PHOSPHORYLATION IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1964 Nov;239:3971–3980. [PubMed] [Google Scholar]
  22. Rasmussen H., Chance B., Ogata E. A mechanism for the reactions of calcium with mitochondria. Proc Natl Acad Sci U S A. 1965 May;53(5):1069–1076. doi: 10.1073/pnas.53.5.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Selwyn M. J., Dawson A. P., Dunnett S. J. Calcium transport in mitochondria. FEBS Lett. 1970 Sep 18;10(1):1–5. doi: 10.1016/0014-5793(70)80402-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES