Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Apr;71(4):1525–1529. doi: 10.1073/pnas.71.4.1525

Mechanism of Renaturation of Pyruvate Kinase of Saccharomyces carlsbergensis: Activation by L-Valine and Magnesium and Manganese Ions

Lothar Bornmann 1, Benno Hess 1,*, Hildegard Zimmermann-Telschow 1
PMCID: PMC388263  PMID: 4524655

Abstract

Pyruvate kinase (EC 2.7.1.40) of S. carlsbergensis is a tetrameric enzyme, composed of four identical subunits each of which contains 1 mole of L-valine noncovalently bound. The enzyme readily dissociates into monomeric units. L-Valine and magnesium or manganese ions are specific primers of the renaturation process of the enzyme. The amino acid induces renaturation with a K0.5 of 17 μM and a pseudo first-order rate constant of 0.019 min-1 at 25° with respect to the monomeric species, indicating that L-valine influences the folding of the monomeric form from a disordered state to its native conformation being followed by a spontaneous reassociation with formation of the tetrameric enzyme. Independently, magnesium and manganese ions induce the renaturation with a first-order rate constant of the same magnitude.

Keywords: renaturation, protein folding

Full text

PDF
1525

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bischofberger H., Hess B., Röschlau P. Molecular weight of yeast pyruvate kinase. Hoppe Seylers Z Physiol Chem. 1971 Aug;352(8):1139–1150. doi: 10.1515/bchm2.1971.352.2.1139. [DOI] [PubMed] [Google Scholar]
  2. Bischofberger H., Hess B., Röschlau P., Wieker H. J., Zimmermann-Telschow H. Amino-acid composition and subunit structure of yeast-pyruvate kinase. Hoppe Seylers Z Physiol Chem. 1970 Mar;351(3):401–408. doi: 10.1515/bchm2.1970.351.1.401. [DOI] [PubMed] [Google Scholar]
  3. Bornmann L., Röschlau P., Hess B. Essentielle Aminosäurereste von Hefe-Pyruvatkinase. Hoppe Seylers Z Physiol Chem. 1972 May;353(5):696–696. [PubMed] [Google Scholar]
  4. Deal W. C., Jr Metabolic control and structure of glycolytic enzymes. IV. Nicotinamide-adenine dinucleotide dependent in vitro reversal of dissociation and possible in vivo control of yeast glyceraldehyde 3-phosphate dehydrogenase synthesis. Biochemistry. 1969 Jul;8(7):2795–2805. doi: 10.1021/bi00835a016. [DOI] [PubMed] [Google Scholar]
  5. Fischer E. H., Krebs E. G. Relationship of structure to function of muscle phosphorylase. Fed Proc. 1966 Sep-Oct;25(5):1511–1520. [PubMed] [Google Scholar]
  6. Johannes K. J., Hess B. Allosteric kinetics of pyruvate kinase of Saccharomyces carlsbergensis. J Mol Biol. 1973 May 15;76(2):181–205. doi: 10.1016/0022-2836(73)90384-7. [DOI] [PubMed] [Google Scholar]
  7. Müller K., Kratky O., Röschlau P., Hess B. X-ray small-angle scattering of the allosteric yeast pyruvate kinase. Hoppe Seylers Z Physiol Chem. 1972 May;353(5):803–809. doi: 10.1515/bchm2.1972.353.1.803. [DOI] [PubMed] [Google Scholar]
  8. Oesterhelt D., Hess B. Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium. Eur J Biochem. 1973 Aug 17;37(2):316–326. doi: 10.1111/j.1432-1033.1973.tb02990.x. [DOI] [PubMed] [Google Scholar]
  9. Röschlau P., Hess B. Purification and crystallization of yeast pyruvate kinase. Hoppe Seylers Z Physiol Chem. 1972 Mar;353(3):435–440. doi: 10.1515/bchm2.1972.353.1.435. [DOI] [PubMed] [Google Scholar]
  10. Sossinka J., Hess B. Letter: Electron microscopy of pyruvate kinase crystals from Saccharomyces carlsbergensis. J Mol Biol. 1974 Feb 25;83(2):285–287. doi: 10.1016/0022-2836(74)90394-5. [DOI] [PubMed] [Google Scholar]
  11. Tobes M., Kuczenski R. T., Suelter C. H. Yeast pyruvate kinase renaturation after dissociation by guanidine-HCl. Arch Biochem Biophys. 1972 Jul;151(1):56–61. doi: 10.1016/0003-9861(72)90472-9. [DOI] [PubMed] [Google Scholar]
  12. Wetlaufer D. B. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci U S A. 1973 Mar;70(3):697–701. doi: 10.1073/pnas.70.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wetlaufer D. B., Ristow S. Acquisition of three-dimensional structure of proteins. Annu Rev Biochem. 1973;42:135–158. doi: 10.1146/annurev.bi.42.070173.001031. [DOI] [PubMed] [Google Scholar]
  14. Wieker H. -J., Johannes K. -J., Hess B. A computer program for the determination of kinetic parameters from sigmoidal steady-state kinetics. FEBS Lett. 1970 Jun 8;8(4):178–185. doi: 10.1016/0014-5793(70)80258-7. [DOI] [PubMed] [Google Scholar]
  15. Wieker H. J., Hess B. Allosteric interactions of yeast pyruvate kinase as a function of pH. Biochemistry. 1971 Mar 30;10(7):1243–1248. doi: 10.1021/bi00783a022. [DOI] [PubMed] [Google Scholar]
  16. Wieker H. J., Hess B. Function of thiol groups in yeast pyruvate kinase. Hoppe Seylers Z Physiol Chem. 1972 Dec;353(12):1877–1893. doi: 10.1515/bchm2.1972.353.2.1877. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES