Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Apr;71(4):1554–1558. doi: 10.1073/pnas.71.4.1554

Synthesis of Nerve Growth Factor by L and 3T3 Cells in Culture

Joel Oger 1,2,3,4, Barry G W Arnason 1,2,3,4,*, Nicholas Pantazis 1,2,3,4, James Lehrich 1,2,3,4, Michael Young 1,2,3,4,*
PMCID: PMC388269  PMID: 4524658

Abstract

Mouse submaxillary gland nerve growth factor (NGF) has been covalently joined to bacteriophage and the resulting phage conjugates remain biologically active in stimulating neurite extension from sensory ganglia. A sensitive bacteriophage immunoassay has been developed to measure concentrations of NGF as low as 1 ng/ml. With this method, we find that mouse L and 3T3 cells in culture produce a biologically active nerve growth factor that is immunologically similar if not identical to mouse submaxillary gland NGF. Since L cells are known to be a source of “conditioned medium” for tissue culture, it could be that one or more of the conditioning factor activities secreted by these cells are due to NGF itself.

Keywords: conditioned culture medium, bacteriophage immunoassay, fibroblasts

Full text

PDF
1554

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angeletti R. H., Bradshaw R. A. Nerve growth factor from mouse submaxillary gland: amino acid sequence. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2417–2420. doi: 10.1073/pnas.68.10.2417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Austin P. E., McCulloch E. A., Till J. E. Stimulation of uptake of tritiated thymidine into mouse marrow cells in culture by a factor from L-cell conditioned medium. J Cell Physiol. 1972 Apr;79(2):181–188. doi: 10.1002/jcp.1040790204. [DOI] [PubMed] [Google Scholar]
  3. Banerjee S. P., Snyder S. H., Cuatrecasas P., Greene L. A. Binding of nerve growth factor receptor in sympathetic ganglia. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2519–2523. doi: 10.1073/pnas.70.9.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bocchini V., Angeletti P. U. The nerve growth factor: purification as a 30,000-molecular-weight protein. Proc Natl Acad Sci U S A. 1969 Oct;64(2):787–794. doi: 10.1073/pnas.64.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burdman J. A., Goldstein M. N. Synthesis and storage of a nerve growth protein in mouse submandibular glands. J Exp Zool. 1965 Nov;160(2):183–188. doi: 10.1002/jez.1401600205. [DOI] [PubMed] [Google Scholar]
  6. Burnham P., Raiborn C., Varon S. Replacement of nerve-growth factor by ganglionic non-neuronal cells for the survival in vitro of dissociated ganglionic neurons. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3556–3560. doi: 10.1073/pnas.69.12.3556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Culp L. A., Black P. H. Contact-inhibited revertant cell lines isolated from simian virus 40-transformed cells. 3. Concanavalin A-selected revertant cells. J Virol. 1972 Apr;9(4):611–620. doi: 10.1128/jvi.9.4.611-620.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frazier W. A., Boyd L. F., Bradshaw R. A. Interaction of nerve growth factor with surface membranes: biological competence of insolubilized nerve growth factor. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2931–2935. doi: 10.1073/pnas.70.10.2931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fuchs S., Sela M., Anfinsen C. B. Nuclease-coated bacteriophage: a sensitive tool for studying antigenic reactivity of synthetic sequence fragments. Arch Biochem Biophys. 1973 Feb;154(2):601–605. doi: 10.1016/0003-9861(73)90014-3. [DOI] [PubMed] [Google Scholar]
  10. Haas D. C., Hier D. B., Arnason G. W., Young M. On a possible relationship of cyclic AMP to the mechanism of action of nerve growth factor. Proc Soc Exp Biol Med. 1972 May;140(1):45–47. doi: 10.3181/00379727-140-36392. [DOI] [PubMed] [Google Scholar]
  11. Hier D. B., Arnason B. G., Young M. Studies on the mechanism of action of nerve growth factor. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2268–2272. doi: 10.1073/pnas.69.8.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LEVI-MONTALCINI R., HAMBURGER V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool. 1951 Mar;116(2):321–361. doi: 10.1002/jez.1401160206. [DOI] [PubMed] [Google Scholar]
  13. Levi-Montalcini R., Angeletti P. U. Nerve growth factor. Physiol Rev. 1968 Jul;48(3):534–569. doi: 10.1152/physrev.1968.48.3.534. [DOI] [PubMed] [Google Scholar]
  14. Levi-Montalcini R., Booker B. EXCESSIVE GROWTH OF THE SYMPATHETIC GANGLIA EVOKED BY A PROTEIN ISOLATED FROM MOUSE SALIVARY GLANDS. Proc Natl Acad Sci U S A. 1960 Mar;46(3):373–384. doi: 10.1073/pnas.46.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Monard D., Solomon F., Rentsch M., Gysin R. Glia-induced morphological differentiation in neuroblastoma cells. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1894–1897. doi: 10.1073/pnas.70.6.1894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mäkelä O. Assay of anti-hapten antibody with the aid of hapten-coupled bacteriophage. Immunology. 1966 Jan;10(1):81–86. [PMC free article] [PubMed] [Google Scholar]
  17. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  18. Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
  19. Roisen F. J., Murphy R. A., Pichichero M. E., Braden W. G. Cyclic adenosine monophosphate stimulation of axonal elongation. Science. 1972 Jan 7;175(4017):73–74. doi: 10.1126/science.175.4017.73. [DOI] [PubMed] [Google Scholar]
  20. Shodell M. Environmental stimuli in the progression of BHK-21 cells through the cell cycle. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1455–1459. doi: 10.1073/pnas.69.6.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Virolainen M., Defendi V. Dependence of macrophage growth in vitro upon interaction with other cell types. Wistar Inst Symp Monogr. 1967;7:67–85. [PubMed] [Google Scholar]
  22. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES