Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 May;71(5):1648–1652. doi: 10.1073/pnas.71.5.1648

Cyclic Electrochemical Inactivation and Restoration of Competence of Bone Matrix to Transform Fibroblasts

A H Reddi 1, Charles B Huggins 1
PMCID: PMC388294  PMID: 4525455

Abstract

Brief exposure of rat bone matrix to highly charged electrochemicals had profound but reversible effects on its competence to transform fibroblasts into chondroblasts and osteoblasts. Suppression and subsequent reactivation of this function were influenced critically by the charge of the electrochemical reagent and the pH of the reaction mixture. In dilute acids, Evans Blue, a long electronegative molecule, suppressed transforming competence, whereas hexadimethrine, a polycationic quaternary ammonium base, failed to do so. A cycle of inactivation-restoration of transforming competence was achieved by sequential treatment of bone matrix with Evans Blue followed by hexadimethrine; an electrochemical complex was demonstrated by histochemistry. In dilute alkalies, hexadimethrine inhibited, whereas, Evans Blue did not suppress the transforming function of the bone matrix. Electric charge characteristics on the surface of the bone matrix are of crucial significance for the fibroblast-transforming attribute.

Keywords: bone matrix, Evans Blue, hexadimethrine, 45Ca, cartilage

Full text

PDF
1648

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARLOW G. H., COEN L. J., KIMURA E. T., KERESZTES-NAGY S. MACROMOLECULAR PROPERTIES OF HEXADIMETHRINE BROMIDE, AN ANTIHEPARIN AGENT. Proc Soc Exp Biol Med. 1963 Aug-Sep;113:884–886. doi: 10.3181/00379727-113-28520. [DOI] [PubMed] [Google Scholar]
  2. Bang G., Urist M. R. Bone induction in excavation chambers in matrix of decalcified dentin. Arch Surg. 1967 Jun;94(6):781–789. doi: 10.1001/archsurg.1967.01330120035008. [DOI] [PubMed] [Google Scholar]
  3. HUGGINS C., MORII S. Selective adrenal necrosis and apoplexy induced by 7, 12-dimethylbenz(a)anthracene. J Exp Med. 1961 Nov 1;114:741–760. doi: 10.1084/jem.114.5.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Huggins C. B., Reddi A. H. Coagulation of blood plasma of guinea pig by the bone matrix. Proc Natl Acad Sci U S A. 1973 Mar;70(3):929–933. doi: 10.1073/pnas.70.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Huggins C. B., Urist M. R. Dentin matrix transformation: rapid induction of alkaline phosphatase and cartilage. Science. 1970 Feb 6;167(3919):896–898. doi: 10.1126/science.167.3919.896. [DOI] [PubMed] [Google Scholar]
  6. Kojima K., Yamagata T. Glycosaminoglycans and electrokinetic behavior of rat ascites hepatoma cells. Exp Cell Res. 1971 Jul;67(1):142–146. doi: 10.1016/0014-4827(71)90629-x. [DOI] [PubMed] [Google Scholar]
  7. Kraemer P. M. Heparan sulfates of cultured cells. I. Membrane-associated and cell-sap species in Chinese hamster cells. Biochemistry. 1971 Apr 13;10(8):1437–1445. doi: 10.1021/bi00784a026. [DOI] [PubMed] [Google Scholar]
  8. MACPHERSON I., STOKER M. Polyoma transformation of hamster cell clones--an investigation of genetic factors affecting cell competence. Virology. 1962 Feb;16:147–151. doi: 10.1016/0042-6822(62)90290-8. [DOI] [PubMed] [Google Scholar]
  9. Montagnier L. Corrélation entre la transformation des cellules BHK 21 et leur résistance aux polysaccharides acides en milieu gélifié. C R Acad Sci Hebd Seances Acad Sci D. 1968 Apr 26;267(9):921–924. [PubMed] [Google Scholar]
  10. Nevo Z., Dorfman A. Stimulation of chondromucoprotein synthesis in chondrocytes by extracellular chondromucoprotein. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2069–2072. doi: 10.1073/pnas.69.8.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Reddi A. H., Huggins C. B. Citrate and alkaline phosphatase during transformation of fibroblasts by the matrix and minerals of bone. Proc Soc Exp Biol Med. 1972 Jul;140(3):807–810. doi: 10.3181/00379727-140-36557. [DOI] [PubMed] [Google Scholar]
  12. Reddi A. H., Huggins C. B. Influence of geometry of transplanted tooth and bone on transformation of fibroblasts. Proc Soc Exp Biol Med. 1973 Jul;143(3):634–637. doi: 10.3181/00379727-143-37381. [DOI] [PubMed] [Google Scholar]
  13. Reddi A. H., Huggins C. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1601–1605. doi: 10.1073/pnas.69.6.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reddi A. H., Huggins C. Lactic-malic dehydrogenase quotients during transformation of fibroblasts into cartilage and bone. Proc Soc Exp Biol Med. 1971 May;137(1):127–129. doi: 10.3181/00379727-137-35527. [DOI] [PubMed] [Google Scholar]
  15. Sanders F. K., Smith J. D. Effect of collagen and acid polysaccharides on the growth of BHK-21 cells in semi-solid media. Nature. 1970 Aug 1;227(5257):513–515. doi: 10.1038/227513a0. [DOI] [PubMed] [Google Scholar]
  16. Urist M. R. Bone: formation by autoinduction. Science. 1965 Nov 12;150(3698):893–899. doi: 10.1126/science.150.3698.893. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES