Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jul 23;93(15):7811–7815. doi: 10.1073/pnas.93.15.7811

Minimal definition of the imprinting center and fixation of chromosome 15q11-q13 epigenotype by imprinting mutations.

S Saitoh 1, K Buiting 1, P K Rogan 1, J L Buxton 1, D J Driscoll 1, J Arnemann 1, R König 1, S Malcolm 1, B Horsthemke 1, R D Nicholls 1
PMCID: PMC38830  PMID: 8755558

Abstract

Patients with disorders involving imprinted genes such as Angelman syndrome (AS) and Prader-Willi syndrome (PWS) can have a mutation in the imprinting mechanism. Previously, we identified an imprinting center (IC) within chromosome 15q11-ql3 and proposed that IC mutations block resetting of the imprint, fixing on that chromosome the parental imprint (epigenotype) on which the mutation arose. We now describe four new microdeletions of the IC, the smallest (6 kb) of which currently defines the minimal region sufficient to confer an AS imprinting mutation. The AS deletions all overlap this minimal region, centromeric to the PWS microdeletions, which include the first exon of the SNRPN gene. None of five genes or transcripts in the 1.0 Mb vicinity of the IC (ZNF127, SNRPN, PAR-5, IPW, and PAR-1), each normally expressed only from the paternal allele, was expressed in cells from PWS imprinting mutation patients. In contrast, AS imprinting mutation patients show biparental expression of SNRPN and IPW but must lack expression of the putative AS gene 250-1000 kb distal of the IC. These data strongly support a model in which the paternal chromosome of these PWS patients carries an ancestral maternal epigenotype, and the maternal chromosome of these AS patients carries an ancestral paternal epigenotype. The IC therefore functions to reset the maternal and paternal imprints throughout a 2-Mb imprinted domain within human chromosome 15q11-q13 during gametogenesis.

Full text

PDF
7811

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barlow D. P. Imprinting: a gamete's point of view. Trends Genet. 1994 Jun;10(6):194–199. doi: 10.1016/0168-9525(94)90255-0. [DOI] [PubMed] [Google Scholar]
  2. Buiting K., Dittrich B., Robinson W. P., Guitart M., Abeliovich D., Lerer I., Horsthemke B. Detection of aberrant DNA methylation in unique Prader-Willi syndrome patients and its diagnostic implications. Hum Mol Genet. 1994 Jun;3(6):893–895. doi: 10.1093/hmg/3.6.893. [DOI] [PubMed] [Google Scholar]
  3. Buiting K., Saitoh S., Gross S., Dittrich B., Schwartz S., Nicholls R. D., Horsthemke B. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet. 1995 Apr;9(4):395–400. doi: 10.1038/ng0495-395. [DOI] [PubMed] [Google Scholar]
  4. Dahl H. H., Hunt S. M., Hutchison W. M., Brown G. K. The human pyruvate dehydrogenase complex. Isolation of cDNA clones for the E1 alpha subunit, sequence analysis, and characterization of the mRNA. J Biol Chem. 1987 May 25;262(15):7398–7403. [PubMed] [Google Scholar]
  5. Driscoll D. J., Waters M. F., Williams C. A., Zori R. T., Glenn C. C., Avidano K. M., Nicholls R. D. A DNA methylation imprint, determined by the sex of the parent, distinguishes the Angelman and Prader-Willi syndromes. Genomics. 1992 Aug;13(4):917–924. doi: 10.1016/0888-7543(92)90001-9. [DOI] [PubMed] [Google Scholar]
  6. Feinberg A. P., Kalikin L. M., Johnson L. A., Thompson J. S. Loss of imprinting in human cancer. Cold Spring Harb Symp Quant Biol. 1994;59:357–364. doi: 10.1101/sqb.1994.059.01.040. [DOI] [PubMed] [Google Scholar]
  7. Giacalone J., Francke U. Single nucleotide dimorphism in the transcribed region of the SNRPN gene at 15q12. Hum Mol Genet. 1994 Feb;3(2):379–379. doi: 10.1093/hmg/3.2.379. [DOI] [PubMed] [Google Scholar]
  8. Glenn C. C., Nicholls R. D., Robinson W. P., Saitoh S., Niikawa N., Schinzel A., Horsthemke B., Driscoll D. J. Modification of 15q11-q13 DNA methylation imprints in unique Angelman and Prader-Willi patients. Hum Mol Genet. 1993 Sep;2(9):1377–1382. doi: 10.1093/hmg/2.9.1377. [DOI] [PubMed] [Google Scholar]
  9. Glenn C. C., Saitoh S., Jong M. T., Filbrandt M. M., Surti U., Driscoll D. J., Nicholls R. D. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene. Am J Hum Genet. 1996 Feb;58(2):335–346. [PMC free article] [PubMed] [Google Scholar]
  10. Hatada I., Mukai T. Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nat Genet. 1995 Oct;11(2):204–206. doi: 10.1038/ng1095-204. [DOI] [PubMed] [Google Scholar]
  11. Kitsberg D., Selig S., Brandeis M., Simon I., Keshet I., Driscoll D. J., Nicholls R. D., Cedar H. Allele-specific replication timing of imprinted gene regions. Nature. 1993 Jul 29;364(6436):459–463. doi: 10.1038/364459a0. [DOI] [PubMed] [Google Scholar]
  12. Leighton P. A., Ingram R. S., Eggenschwiler J., Efstratiadis A., Tilghman S. M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature. 1995 May 4;375(6526):34–39. doi: 10.1038/375034a0. [DOI] [PubMed] [Google Scholar]
  13. Lubinsky M., Zellweger H., Greenswag L., Larson G., Hansmann I., Ledbetter D. Familial Prader-Willi syndrome with apparently normal chromosomes. Am J Med Genet. 1987 Sep;28(1):37–43. doi: 10.1002/ajmg.1320280106. [DOI] [PubMed] [Google Scholar]
  14. Mutirangura A., Jayakumar A., Sutcliffe J. S., Nakao M., McKinney M. J., Buiting K., Horsthemke B., Beaudet A. L., Chinault A. C., Ledbetter D. H. A complete YAC contig of the Prader-Willi/Angelman chromosome region (15q11-q13) and refined localization of the SNRPN gene. Genomics. 1993 Dec;18(3):546–552. doi: 10.1016/s0888-7543(11)80011-x. [DOI] [PubMed] [Google Scholar]
  15. Nicholls R. D. New insights reveal complex mechanisms involved in genomic imprinting. Am J Hum Genet. 1994 May;54(5):733–740. [PMC free article] [PubMed] [Google Scholar]
  16. Rao V. N., Papas T. S., Reddy E. S. erg, a human ets-related gene on chromosome 21: alternative splicing, polyadenylation, and translation. Science. 1987 Aug 7;237(4815):635–639. doi: 10.1126/science.3299708. [DOI] [PubMed] [Google Scholar]
  17. Reed M. L., Leff S. E. Maternal imprinting of human SNRPN, a gene deleted in Prader-Willi syndrome. Nat Genet. 1994 Feb;6(2):163–167. doi: 10.1038/ng0294-163. [DOI] [PubMed] [Google Scholar]
  18. Reik W., Brown K. W., Schneid H., Le Bouc Y., Bickmore W., Maher E. R. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet. 1995 Dec;4(12):2379–2385. doi: 10.1093/hmg/4.12.2379. [DOI] [PubMed] [Google Scholar]
  19. Reis A., Dittrich B., Greger V., Buiting K., Lalande M., Gillessen-Kaesbach G., Anvret M., Horsthemke B. Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes. Am J Hum Genet. 1994 May;54(5):741–747. [PMC free article] [PubMed] [Google Scholar]
  20. Sutcliffe J. S., Nakao M., Christian S., Orstavik K. H., Tommerup N., Ledbetter D. H., Beaudet A. L. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat Genet. 1994 Sep;8(1):52–58. doi: 10.1038/ng0994-52. [DOI] [PubMed] [Google Scholar]
  21. Villar A. J., Pedersen R. A. Parental imprinting of the Mas protooncogene in mouse. Nat Genet. 1994 Dec;8(4):373–379. doi: 10.1038/ng1294-373. [DOI] [PubMed] [Google Scholar]
  22. Weksberg R., Teshima I., Williams B. R., Greenberg C. R., Pueschel S. M., Chernos J. E., Fowlow S. B., Hoyme E., Anderson I. J., Whiteman D. A. Molecular characterization of cytogenetic alterations associated with the Beckwith-Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Hum Mol Genet. 1993 May;2(5):549–556. doi: 10.1093/hmg/2.5.549. [DOI] [PubMed] [Google Scholar]
  23. Wevrick R., Kerns J. A., Francke U. Identification of a novel paternally expressed gene in the Prader-Willi syndrome region. Hum Mol Genet. 1994 Oct;3(10):1877–1882. doi: 10.1093/hmg/3.10.1877. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES