Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 May;71(5):1686–1690. doi: 10.1073/pnas.71.5.1686

The Activity-Related Ionization in Carbonic Anhydrase

David W Appleton 1,2, Bibudhendra Sarkar 1,2
PMCID: PMC388303  PMID: 4209558

Abstract

The catalytic activity of carbonic anhydrase (EC 4.2.1.1) is linked to the ionization of a group in close proximity to the essential zinc ion. Studies have been undertaken to delineate the ionizations germane to the active-site chelate system. Several imidazole ligand systems were studied in order to approach a representative chelate. The simplest involved the complexation of Zn(II) by imidazole and by N-methylimidazole. As well, two bidentate systems, Zn(II)-4,4′-bis-imidazoylmethane and Co(II)-cyclic-L-histidyl-L-histidine were investigated. It was found that in a species containing metal-bound water and imidazole coordinated by means of the pyridinium nitrogen, the most acidic group was the pyrrole N-H in the imidazole ring. By the use of N-methylimidazole, the pKa of a metal-bound water molecule in a tri-imidazole ligand field was found to be 9.1. Noting the preference for labilization of the pyrrole hydrogen, the catalytic features of carbonic anhydrase are reexamined assuming that the pKenz is associated with the N-H ionization, and not with the ionization of metal-bound water.

Keywords: metalloenzymes, enzyme mechanism, imidazole chelates

Full text

PDF
1686

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen J. S., Yim C. T., Kandel M., Gornall A. G., Kandel S. I., Freedman M. H. Studies of the histidine residues of carbonic anhydrases using high-field proton magnetic resonance. Biochemistry. 1972 Feb 1;11(3):327–334. doi: 10.1021/bi00753a003. [DOI] [PubMed] [Google Scholar]
  2. Coleman J. E., Coleman R. V. Magnetic circular dichroism of Co (II) carbonic anhydrase. J Biol Chem. 1972 Aug 10;247(15):4718–4728. [PubMed] [Google Scholar]
  3. Coleman J. E. Human carbonic anhydrase. Protein conformation and metal ion binding. Biochemistry. 1965 Dec;4(12):2644–2655. doi: 10.1021/bi00888a014. [DOI] [PubMed] [Google Scholar]
  4. Coleman J. E. Mechanism of action of carbonic anhydrase. Subtrate, sulfonamide, and anion binding. J Biol Chem. 1967 Nov 25;242(22):5212–5219. [PubMed] [Google Scholar]
  5. DREY C. N., FRUTON J. S. SYNTHESIS AND PROPERTIES OF A BIS-IMIDAZOLE. Biochemistry. 1965 Jan;4:1–5. doi: 10.1021/bi00877a001. [DOI] [PubMed] [Google Scholar]
  6. Drey C. N., Fruton J. S. Metal chelates of a bis-imidazole. Biochemistry. 1965 Jul;4(7):1258–1263. doi: 10.1021/bi00883a007. [DOI] [PubMed] [Google Scholar]
  7. Fabry M. E., Koenig S. H., Schillinger W. E. Nuclear magnetic relaxation dispersion in protein solutions. IV. Proton relaxation at the active site of carbonic anhydrase. J Biol Chem. 1970 Sep 10;245(17):4256–4262. [PubMed] [Google Scholar]
  8. GIBBONS B. H., EDSALL J. T. KINETIC STUDIES OF HUMAN CARBONIC ANHYDRASES B AND C. J Biol Chem. 1964 Aug;239:2539–2544. [PubMed] [Google Scholar]
  9. Khalifah R. G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem. 1971 Apr 25;246(8):2561–2573. [PubMed] [Google Scholar]
  10. King R. W., Roberts G. C. Nuclear magnetic resonance studies of human carbonic anhydrase B. Histidine residues. Biochemistry. 1971 Feb 16;10(4):558–565. doi: 10.1021/bi00780a003. [DOI] [PubMed] [Google Scholar]
  11. Koenig S. H., Brown R. D., 3rd H 2 CO 3 as substrate for carbonic anhydrase in the dehydration of HCO 3 . Proc Natl Acad Sci U S A. 1972 Sep;69(9):2422–2425. doi: 10.1073/pnas.69.9.2422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koenig S. H., Brown R. D. Kinetic parameters of human carbonic anhydrase B as determined from NMR linewidths of 13 C in CO 2 and HCO 3 - . Biochem Biophys Res Commun. 1973 Jul 17;53(2):624–630. doi: 10.1016/0006-291x(73)90707-9. [DOI] [PubMed] [Google Scholar]
  13. LINDSKOG S. Effects of pH and inhibitors on some properties related to metal binding in bovine carbonic anhydrase. J Biol Chem. 1963 Mar;238:945–951. [PubMed] [Google Scholar]
  14. LINDSKOG S., NYMAN P. O. METAL-BINDING PROPERTIES OF HUMAN ERYTHROCYTE CARBONIC ANHYDRASES. Biochim Biophys Acta. 1964 Jun 1;85:462–474. doi: 10.1016/0926-6569(64)90310-4. [DOI] [PubMed] [Google Scholar]
  15. Liljas A., Kannan K. K., Bergstén P. C., Waara I., Fridborg K., Strandberg B., Carlbom U., Järup L., Lövgren S., Petef M. Crystal structure of human carbonic anhydrase C. Nat New Biol. 1972 Feb 2;235(57):131–137. doi: 10.1038/newbio235131a0. [DOI] [PubMed] [Google Scholar]
  16. Lindskog S., Coleman J. E. The catalytic mechanism of carbonic anhydrase. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2505–2508. doi: 10.1073/pnas.70.9.2505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Prince R. H., Woolley P. R. Metal ion function in carbonic anhydrase. Angew Chem Int Ed Engl. 1972 May;11(5):408–417. doi: 10.1002/anie.197204081. [DOI] [PubMed] [Google Scholar]
  18. Rosenberg R. C., Root C. A., Wang R. H., Cerdonio M., Gray H. B. The nature of the ground states of cobalt(II) and nickel(II) carboxypeptidase A. Proc Natl Acad Sci U S A. 1973 Jan;70(1):161–163. doi: 10.1073/pnas.70.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ward R. L. 35C1 nuclear magnetic resonance studies of a zinc metalloenzyme carbonic anhydrase. Biochemistry. 1969 May;8(5):1879–1883. doi: 10.1021/bi00833a016. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES