Abstract
During prolonged starvation, fructose 1,6bisphosphatase (EC 3.1.3.11) activity in rabbit liver and kidney shows a transient decrease during the first 36 hr, before rising at 96 hr to levels severalfold higher than those found in the livers of fed animals. Proteolytic activity appears in the 105,000 × g supernatant fraction within several hours of starvation, and continues to increase during the entire 96-hr period. On refeeding, the activities return to nearly the control levels within 24 hr. The catalytic properties of fructose 1,6-bisphosphatase isolated from the livers of fasted rabbits are similar to those of the enzyme from fed animals, but its structure is modified, since it no longer contains the single tryptophan residue located near the NH2-terminus in the native enzyme. Thus this tryptophan residue is not required for the neutral pH optimum. The structural changes and the transient decrease in activity may be related to the observed increase in “free” proteolytic activity.
Keywords: gluconeogenesis, proteolysis, rabbit liver, rabbit kidney, lysosomes, phosphoenolpyruvate, phosphoenolpyruvate carboxykinase, phosphofructokinase
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Byrne W. L., Rajagopalan G. T., Griffn L. D., Ellis E. H., Harris T. M., Hochachka P., Reid L., Geller A. M. Bovine hepatic fructose 1,6-diphosphatase: purification and properties. Arch Biochem Biophys. 1971 Sep;146(1):118–133. doi: 10.1016/s0003-9861(71)80048-6. [DOI] [PubMed] [Google Scholar]
- Carlson C. W., Baxter R. C., Ulm E. H., Pogell B. M. Role of oleate in the regulation of "neutral" rabbit liver fructose 1,6-diphosphatase activity. J Biol Chem. 1973 Aug 25;248(16):5555–5561. [PubMed] [Google Scholar]
- Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
- Foster D. O., Ray P. D., Lardy H. A. Studies on the mechanisms underlying adaptive changes in rat liver phosphoenolpyruvate carboxykinase. Biochemistry. 1966 Feb;5(2):555–562. doi: 10.1021/bi00866a022. [DOI] [PubMed] [Google Scholar]
- Johnson D. C., Brunsvold R. A., Ebert K. A., Ray P. D. Gluconeogenesis in rabbit liver. I. Pyruvate-derived dicarboxylic acids and phosphoenolpyruvate formation in rabbit liver. J Biol Chem. 1973 Feb 10;248(3):763–770. [PubMed] [Google Scholar]
- Krebs H. A., Newsholme E. A., Speake R., Gascoyne T., Lund P. Some factors regulating the rate of gluconeogenesis in animal tissues. Adv Enzyme Regul. 1964;2:71–81. doi: 10.1016/s0065-2571(64)80006-6. [DOI] [PubMed] [Google Scholar]
- NORDLIE R. C., LARDY H. A. Mammalian liver phosphoneolpyruvate carboxykinase activities. J Biol Chem. 1963 Jul;238:2259–2263. [PubMed] [Google Scholar]
- Pontremoli S., Melloni E., Balestrero F., Franzi A. T., De Flora A., Horecker B. L. Fructose 1,6-bisphosphatase: the role of lysosomal enzymes in the modification of catalytic and structural properties. Proc Natl Acad Sci U S A. 1973 Feb;70(2):303–305. doi: 10.1073/pnas.70.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pontremoli S., Melloni E., De Flora A., Horecker B. L. Conversion of neutral to alkaline liver fructose 1,6-bisphosphatase: changes in molecular properties of the enzyme. Proc Natl Acad Sci U S A. 1973 Mar;70(3):661–664. doi: 10.1073/pnas.70.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pontremoli S., Melloni E., Salamino F., Franzi A. T., De Flora A., Horecker B. L. Changes in rabbit-liver lysosomes and fructose 1,6-bisphosphatase induced by cold and fasting. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3674–3678. doi: 10.1073/pnas.70.12.3674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarngadharan M. G., Pogell B. M. Variability in the catalytic and allosteric properties of rabbit liver fructose 1,6-diphosphatase. The prescence of tryptophan in homogeneous enzyme. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1247–1254. doi: 10.1016/s0006-291x(72)80109-8. [DOI] [PubMed] [Google Scholar]
- TALLAN H. H., JONES M. E., FRUTON J. S. On the proteolytic enzymes of animal tissues. X. Beef spleen cathepsin C. J Biol Chem. 1952 Feb;194(2):793–805. [PubMed] [Google Scholar]
- Tashima Y., Tholey G., Drummond G., Bertrand H., Rosenberg J. S., Horecker B. L. Purification and properties of a rabbit kidney fructose diphosphatase with neutral pH optimum. Arch Biochem Biophys. 1972 Mar;149(1):118–126. doi: 10.1016/0003-9861(72)90305-0. [DOI] [PubMed] [Google Scholar]
- Traniello S., Melloni E., Pontremoli S., Sia C. L., Horecker R. L. Rabbit liver fructose 1,6-diphosphatase. Properties of the native enzyme and their modification by subtilisin. Arch Biochem Biophys. 1972 Mar;149(1):222–231. doi: 10.1016/0003-9861(72)90317-7. [DOI] [PubMed] [Google Scholar]
- Traniello S., Pontremoli S., Tashima Y., Horecker B. L. Fructose 1, 6-diphosphatase from liver: isolation of the native form with optimal activity at neutral pH. Arch Biochem Biophys. 1971 Sep;146(1):161–166. doi: 10.1016/s0003-9861(71)80052-8. [DOI] [PubMed] [Google Scholar]
- Weber G., Singhal R. L., Stamm N. B., Lea M. A., Fisher E. A. Synchronous behavior pattern of key glycolytic enzymes: glucokinase, phosphofructokinase, and pyruvate kinase. Adv Enzyme Regul. 1966;4:59–81. doi: 10.1016/0065-2571(66)90007-0. [DOI] [PubMed] [Google Scholar]
