Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 May;71(5):1945–1948. doi: 10.1073/pnas.71.5.1945

Proton Nuclear Magnetic Resonance Investigations and Ring Current Calculations of Guanine N-1 and Thymine N-3 Hydrogen-Bonded Protons in Double-Helical Deoxyribonucleotides in Aqueous Solution

Dinshaw J Patel 1, Alan E Tonelli 1
PMCID: PMC388359  PMID: 4525304

Abstract

Methods are outlined for assigning the guanine-N1H and thymine-N3H protons to particular base pairs in the proton nuclear magnetic resonance spectra of double-stranded oligodeoxyribonucleotides of known sequence in aqueous solution. Ring current calculations have been used to evaluate the upfield shifts of the guanine-N1H and thymine-N3H protons from the pyrimidine and purine rings of nearest-neighbor base pairs in DNA B-type double-helical structures. Chemical shifts of 13.6 ± 0.1 ppm and 14.6 ± 0.2 ppm are assigned to the guanine-N1H proton of an isolated G·C base pair and the thymine-N3H proton of an isolated A·T base pair, respectively.

Keywords: base pairs, actinomycin D

Full text

PDF
1945

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Giessner-Prettre C., Pullman B. Intermolecular nuclear shielding values for protons of purines and flavins. J Theor Biol. 1970 Apr;27(1):87–95. doi: 10.1016/0022-5193(70)90130-x. [DOI] [PubMed] [Google Scholar]
  2. Jain S. C., Sobell H. M. Stereochemistry of actinomycin binding to DNA. I. Refinement and further structural details of the actinomycin-deoxyguanosine crystalline complex. J Mol Biol. 1972 Jul 14;68(1):1–20. doi: 10.1016/0022-2836(72)90258-6. [DOI] [PubMed] [Google Scholar]
  3. Katz L., Penman S. Association by hydrogen bonding of free nucleosides in non-aqueous solution. J Mol Biol. 1966 Jan;15(1):220–231. doi: 10.1016/s0022-2836(66)80222-x. [DOI] [PubMed] [Google Scholar]
  4. Kearns D. R., Patel D. J., Shulman R. G. High resolution nuclear magnetic resonance studies of hydrogen bonded protons of tRNA in water. Nature. 1971 Jan 29;229(5283):338–339. doi: 10.1038/229338a0. [DOI] [PubMed] [Google Scholar]
  5. Rosenberg J. M., Seeman N. C., Kim J. J., Suddath F. L., Nicholas H. B., Rich A. Double helix at atomic resolution. Nature. 1973 May 18;243(5403):150–154. doi: 10.1038/243150a0. [DOI] [PubMed] [Google Scholar]
  6. Shulman R. G., Hilbers C. W., Wong Y. P., Wong K. L., Lightfoot D. R., Reid B. R., Kearns D. R. Determination of secondary and tertiary structural features of transfer RNA molecules in solution by nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2042–2045. doi: 10.1073/pnas.70.7.2042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sobell H. M., Jain S. C. Stereochemistry of actinomycin binding to DNA. II. Detailed molecular model of actinomycin-DNA complex and its implications. J Mol Biol. 1972 Jul 14;68(1):21–34. doi: 10.1016/0022-2836(72)90259-8. [DOI] [PubMed] [Google Scholar]
  8. Travers F., Michelson A. M., Douzou P. Low-temperature studies of polynucleotides. Biochim Biophys Acta. 1970 Jan 21;199(1):29–35. doi: 10.1016/0005-2787(70)90691-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES