Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Jun;71(6):2157–2161. doi: 10.1073/pnas.71.6.2157

Carbon-13 Relaxation and Proton Nuclear Magnetic Resonance Studies of Prostaglandin F

Woodrow W Conover 1,2, Josef Fried 1,2,*
PMCID: PMC388409  PMID: 4526201

Abstract

Carbon magnetic resonance T1 relaxation and chemical shift measurements at 22.63 MHz establish hydrophobic aggregation of prostaglandin F in phosphate buffer solutions between 0.05 and 0.2 M. Analysis of the proton magnetic resonance spectra of prostaglandin F at 270 MHz by double resonance techniques yield all the proton-proton coupling constants for the five-membered ring indicating a favored half-chair conformation for the ring in which the dihedral angle for the C-8 and C-12 protons is close to 180°. Effective correlation times derived from carbon magnetic resonance T1 values for all the carbon atoms show segmental motion for ring carbon C-10 and in the aliphatic portions of both side chains, while the double bonded portions of the side chains and the ring carbons act as a more rigidly interconnected network. Chemical shift changes in the carbon magnetic resonance and proton magnetic resonance spectra upon aggregation suggest that the 5-6 double bond, C-7, and C-9 participate in the aggregation process.

Keywords: chemical shift measurements, conformation in solutions, proton-proton coupling constants, dihedral angles

Full text

PDF
2157

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cooper G. F., Fried J. Carbon-13 nuclear magnetic resonance spectra of prostaglandins and some prostaglandin analogs. Proc Natl Acad Sci U S A. 1973 May;70(5):1579–1584. doi: 10.1073/pnas.70.5.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Duax W. L., Edmonds J. W. Molecular conformation of prostaglandin A1. Prostaglandins. 1973 Feb;3(2):201–208. doi: 10.1016/0090-6980(73)90087-7. [DOI] [PubMed] [Google Scholar]
  3. Hoyland J. R., Kier L. B. Preferred conformation of prostaglandin E 1 . J Med Chem. 1972 Jan;15(1):84–86. doi: 10.1021/jm00271a022. [DOI] [PubMed] [Google Scholar]
  4. Nugteren D. H., Van Dorp D. A., Bergström S., Hamberg M., Samuelsson B. Absolute configuration of the prostaglandins. Nature. 1966 Oct 1;212(5057):38–39. doi: 10.1038/212038a0. [DOI] [PubMed] [Google Scholar]
  5. Rabinowitz I., Ramwell P., Davison P. Conformation of prostaglandins. Nat New Biol. 1971 Sep 15;233(37):88–90. doi: 10.1038/newbio233088a0. [DOI] [PubMed] [Google Scholar]
  6. Roseman T. J., Yalkowsky S. H. Physicochemical properties of prostaglandin F2 alpha (tromethamine salt): solubility behavior, surface properties, and ionization constants. J Pharm Sci. 1973 Oct;62(10):1680–1685. doi: 10.1002/jps.2600621021. [DOI] [PubMed] [Google Scholar]
  7. Small D. M., Penkett S. A., Chapman D. Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. Biochim Biophys Acta. 1969 Jan 21;176(1):178–189. doi: 10.1016/0005-2760(69)90086-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES