Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Jun;71(6):2198–2202. doi: 10.1073/pnas.71.6.2198

A Phosphate-Acceptor Protein Related to Parvalbumins in Dogfish Skeletal Muscle

Hubert E Blum 1, Sitivad Pocinwong 1, Edmond H Fischer 1,*
PMCID: PMC388418  PMID: 4366755

Abstract

A phosphate-acceptor protein was isolated from the skeletal muscle of the Pacific dogfish (Squalus acanthias) displaying properties extremely similar to those of the parvalbumins, i.e., the low-molecular-weight, soluble, Ca-binding muscle proteins found in fish and amphibians. It has the same characteristic UV spectrum, strong affinity for calcium, and immunological crossreactivity with antibodies against homogeneous dogfish parvalbumin. Although it was isolated in three states of aggregation with molecular weights of about 350,000, 75,000, and 25,000, all species dissociate in Na dodecyl sulfate into subunits of 11,000 and 13,000 molecular weight. Furthermore, whereas no phosphorylation of parvalbumins could be demonstrated under any experimental conditions, the aggregated forms could be readily phosphorylated by a cyclic AMP-independent dogfish protein kinase, but not by phosphorylase kinase. One acid-stable and base-labile phosphate group was introduced per subunit which could be rapidly released by a dogfish protein phosphatase, but only very slowly if at all by phosphorylase phosphatase. It is speculated that this “phosphate-acceptor protein” might represent a physiologically active form of the parvalbumins.

Keywords: Ca-binding protein, phosphorylation

Full text

PDF
2198

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benzonana G., Capony J. P., Pechere J. F. The binding of calcium to muscular parvalbumins. Biochim Biophys Acta. 1972 Aug 31;278(1):110–116. doi: 10.1016/0005-2795(72)90111-0. [DOI] [PubMed] [Google Scholar]
  2. Briggs F. N., Fleishman M. Calcium binding by particle-free supernatants of homogenates of skeletal muscle. J Gen Physiol. 1965 Sep;49(1):131–149. [PMC free article] [PubMed] [Google Scholar]
  3. Capony J. P., Pechère J. F. The primary structure of the major parvalbumin from hake muscle. Tryptic peptides derived from the S-sulfo and the performic-acid-oxidized proteins. Eur J Biochem. 1973 Jan 3;32(1):88–96. doi: 10.1111/j.1432-1033.1973.tb02583.x. [DOI] [PubMed] [Google Scholar]
  4. Capony J. P., Rydèn L., Demaille J., Pechère J. F. The primary structure of the major parvalbumin from hake muscle. Overlapping peptides obtained with chemical and enzymatic methods. The complete amino-acid sequence. Eur J Biochem. 1973 Jan 3;32(1):97–108. doi: 10.1111/j.1432-1033.1973.tb02584.x. [DOI] [PubMed] [Google Scholar]
  5. Coffee C. J., Bradshaw R. A. Carp muscle calcium-binding protein. I. Characterization of the tryptic peptides and the complete amino acid sequence of component B. J Biol Chem. 1973 May 10;248(9):3305–3312. [PubMed] [Google Scholar]
  6. Cohen P., Duewer T., Fischer E. H. Phosphorylase from dogfish skeletal muscle. Purification and a comparison of its physical properties to those of rabbit muscle phosphorylase. Biochemistry. 1971 Jul 6;10(14):2683–2694. doi: 10.1021/bi00790a005. [DOI] [PubMed] [Google Scholar]
  7. Cohen P. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation reactions. Eur J Biochem. 1973 Apr 2;34(1):1–14. doi: 10.1111/j.1432-1033.1973.tb02721.x. [DOI] [PubMed] [Google Scholar]
  8. Collins J. H., Potter J. D., Horn M. J., Wilshire G., Jackman N. The amino acid sequence of rabbit skeletal muscle troponin C: gene replication and homology with calcium-binding proteins from carp and hake muscle. FEBS Lett. 1973 Nov 1;36(3):268–272. doi: 10.1016/0014-5793(73)80388-6. [DOI] [PubMed] [Google Scholar]
  9. Focant B., Pechère J. F. Contribution à l'étude des protéines de faible poids moléculaire des myogènes de vertébrés inférieurs. Arch Int Physiol Biochim. 1965 Mar;73(2):334–354. doi: 10.3109/13813456509084256. [DOI] [PubMed] [Google Scholar]
  10. Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heizmann C. W., Malencik D. A., Fischer E. H. Generation of parvalbumin-like proteins from troponin. Biochem Biophys Res Commun. 1974 Mar 15;57(1):162–168. doi: 10.1016/s0006-291x(74)80371-2. [DOI] [PubMed] [Google Scholar]
  12. Hendrickson W. A., Karle J. Carp muscle calcium-binding protein. 3. Phase refinement using the tangent formula. J Biol Chem. 1973 May 10;248(9):3327–3334. [PubMed] [Google Scholar]
  13. KONOSU S., HAMOIR G., PECHERE J. F. CARP MYOGENS OF WHITE AND RED MUSCLES. PROPERTIES AND AMINO ACID COMPOSITION OF THE MAIN LOW-MOLECULAR-WEIGHT COMPONENTS OF WHITE MUSCLE. Biochem J. 1965 Jul;96:98–112. doi: 10.1042/bj0960098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kretsinger R. H. Gene triplication deduced from the tertiary structure of a muscle calcium binding protein. Nat New Biol. 1972 Nov 15;240(98):85–88. doi: 10.1038/newbio240085a0. [DOI] [PubMed] [Google Scholar]
  15. Kretsinger R. H., Nockolds C. E. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem. 1973 May 10;248(9):3313–3326. [PubMed] [Google Scholar]
  16. MacLennan D. H., Wong P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231–1235. doi: 10.1073/pnas.68.6.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murray A. C., Kay C. M. Hydrodynamic and optical properties of troponin A. Demonstration of a conformational change upon binding calcium ion. Biochemistry. 1972 Jul 4;11(14):2622–2627. doi: 10.1021/bi00764a012. [DOI] [PubMed] [Google Scholar]
  18. Nockolds C. E., Kretsinger R. H., Coffee C. J., Bradshaw R. A. Structure of a calcium-binding carp myogen. Proc Natl Acad Sci U S A. 1972 Mar;69(3):581–584. doi: 10.1073/pnas.69.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Parello J., Cavé A., Puigdomenech P., Maury C., Capony J. P., Pechère J. F. Conformational studies on muscular parvalbumins. II. Nuclear magnetic resonance analysis. Biochimie. 1974;56(1):61–76. doi: 10.1016/s0300-9084(74)80356-1. [DOI] [PubMed] [Google Scholar]
  20. Pechère J. F. Muscular parvalbumins as homologous proteins. Comp Biochem Physiol. 1968 Jan;24(1):289–295. doi: 10.1016/0010-406x(68)90978-x. [DOI] [PubMed] [Google Scholar]
  21. Pechére J. F., Demaille J., Capony J. P. Muscular parvalbumins: preparative and analytical methods of general applicability. Biochim Biophys Acta. 1971 May 25;236(2):391–408. doi: 10.1016/0005-2795(71)90220-0. [DOI] [PubMed] [Google Scholar]
  22. Walsh D. A., Ashby C. D., Gonzalez C., Calkins D., Fischer E. H. Krebs EG: Purification and characterization of a protein inhibitor of adenosine 3',5'-monophosphate-dependent protein kinases. J Biol Chem. 1971 Apr 10;246(7):1977–1985. [PubMed] [Google Scholar]
  23. Walsh D. A., Perkins J. P., Brosom C. O., Ho E. S., Kreb E. G. Catlysis of the phosphrylaseinase actition reaction. J Biol Chem. 1971 Apr 10;246(7):1968–1976. [PubMed] [Google Scholar]
  24. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES